期刊文献+

铜离子和亚甲蓝在柠檬酸酯化麦草上的吸附行为 被引量:5

Adsorption behavior of copper ion and methylene blue on citric acid-esterified wheat straw
下载PDF
导出
摘要 以固相酯化法制备一种具有羧基的柠檬酸改性麦草阳离子吸附剂.用批次实验法研究了不同实验条件下(pH值、吸附剂量、吸附质浓度和吸附时间)水溶液中铜离子和亚甲蓝在酯化麦草上的吸附行为.结果表明:溶液初始pH≥4.0时,铜离子和亚甲蓝达到最大吸附值.≥2.0g·L-1的酯化麦草能去除铜浓度为100mg·L-1溶液中96%的铜及亚甲蓝浓度为250mg·L-1溶液中99%的亚甲蓝.酯化麦草对铜离子和亚甲蓝的吸附符合Langmuir等温模型,其最大吸附能力分别为79.37mg·g-1和312.50mg·g-1.铜离子和亚甲蓝达到吸附平衡的时间分别为75min和5h,准一级和准二级反应动力学方程可分别描述酯化麦草对铜离子和亚甲蓝的吸附过程. A cationic adsorbent with carboxyl groups derived from citric acidesterified wheat straw (EWS) was prepared by the method of solid phase preparation, and a batch experiment was conducted to study the adsorption behaviors of Cu (Ⅱ) and methylene blue (MB) in aqueous solution on the EWS under conditions of different initial pH, adsorbent dosage, adsorbate concentration, and contact time. The results showed that the maximum adsorption of Cu (Ⅱ) and MB was obtained when the initial solution pH was ~〉 4. 0. 96% of Cu (Ⅱ) in 100 mg ·L^-1 Cu solution and 99% of MB in 250 mg· L^-1 dye solution could be removed by ≥2.0 g· L^-1 of EWS. The adsorption of Cu (Ⅱ) and MB fitted the Langmuir sorption isothermal model. The maximum removal capacity (Qm) of EWS was 79.37 mg·g^-1 for Cu (Ⅱ) and 312. 50 mg·g^-1 for MB, and the adsorption equilibrium of Cu (Ⅱ) and MB was reached within 75 rain and 5 h, respectively. The adsorption processes of Cu (Ⅱ) and MB could be described by pseudo-first order and pseudo-second order kinetic functions, respectively.
出处 《应用生态学报》 CAS CSCD 北大核心 2008年第3期653-657,共5页 Chinese Journal of Applied Ecology
基金 中国博士后科学基金项目(20060390960) 安徽省教育厅自然科学基金重点研究项目 安徽省重要生物保护与利用重点实验室 安徽省高校生物环境与生态安全省级重点实验室及安徽师范大学生物大分子进化实验室开放基金资助项目
关键词 吸附 铜离子 亚甲蓝 酯化麦草 sorption copper ion methylene blue esterified wheat straw.
  • 相关文献

参考文献25

  • 1Farajzadeh MA, Monji AB. Adsorption characteristics of wheat bran towards heavy metal cations. Separation and Purification Technology, 2004, 38:197-207
  • 2Villaescusa I, Fiol N, Martinez M, et al. Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Research, 2004, 38:992-1002
  • 3Ajmal M, Rao RAK, Khan MA. Adsorption of copper from aqueous solution on Brassica cumpestris (mustard oil cake). Journal of Hazardous Materials, 2005, 122 : 177-183
  • 4Nasemejad B, Zadeh TE, Pour BB, et al. Camparison for biosorption modeling of heavy metals ( Cr (Ⅲ) , Cu (Ⅱ), Zn (Ⅱ) ) adsorption from wastewater by carrot residues. Process Biochemistry, 2005, 40:1319-1322
  • 5Larous S, Meniai AH, Lehocine MB. Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust. Desalination, 2005, 185 : 483 -490
  • 6Singh KK, Talat M, Hasan SH. Removal of lead from aqueous solutions by agricultural waste maize bran. Bioresource Technology, 2006, 97:2124-2130
  • 7Jacques RA, Lima EC, Dias SLP, et al. Yellow passion-fruit shell as biosorbent to remove Cr(Ⅲ) and Pb (Ⅱ) from aqueous solution. Separation and Purification Technology, 2007, 57:193-198
  • 8McKay G, El-Geundi M, Nassar MM. Equilibrium studies during the removal of dyestuffs from aqueous solutions using bagasse pith. Water Research, 1987, 21: 1513-1520
  • 9Namasivayam C, Muniasamy N, Gayatri K, et al. Removal of dyes from aqueous solutions by cellulosic waste orange peel. Bioresource Technology, 1996, 57:37-43
  • 10Robinson T, Chandran B, Nigam P. Removal of dyes from an artificial textile dye effluent by two agricultural waste residues, corncob and barley husk. Environment International, 2002, 28:29-33

同被引文献47

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部