期刊文献+

广义信息熵测度在医学图像配准中的应用 被引量:3

Medical image registration based on generalized entropy measures
下载PDF
导出
摘要 针对互信息测度在配准医学图像时易陷入局部极值的缺点,将Shannon熵扩展到广义熵,提出了三种基于广义熵的信息测度。对于收敛性能的评价,提出收敛宽度和收敛半径的概念。通过人体脑部CT/MR和MR-T1/T2图像的刚体配准实验,从计算时间、收敛性能和配准精度方面,对归一化互信息、广义熵信息测度进行了比较与分析。实验结果表明,在不损失计算时间和配准精度的前提下,广义信息熵测度SRI_0.9和GMI_0.9的收敛性能优于归一化互信息测度,对噪声有很强的鲁棒性。 In order to reduce local maximum and misregistration of mutual information in medical image registration,three information measures based on generalized entropy instead of the Shannon entropy,named as FRI-alpha,SRI-alpha and GMI-t information measures,are proposed.The convergence width and radius are used for evaluating the measure convergence.The computing time,convergence and accuracy are studied by applying these measures to rigid registration of Computed Tomography(CT)/Magnetic Resonance(MR) and MR-T1/T2 simulated images.The results of tests show that the generalized entropy measures outperform normalized mutual information in convergence performance,without compromising computational speed and registration accuracy.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第8期34-36,52,共4页 Computer Engineering and Applications
基金 国家高技术研究发展计划( 863)( the National High- Tech Research and Development Plan of China under Grant No.2006AA02Z4D9) 山东省自然科学基金( the Natural Science Foundation of Shandong Province of China under Grant No.Z2006C05)
关键词 Shannon熵 互信息 广义熵 图像配准 Shannon entropy mutual information generalized entropy image registration
  • 相关文献

参考文献10

  • 1Collignon A,Maes F,Delaere D,et al.Automated multimodality image registration using information theory[J].Information Processing in Medical Imaging, 1995:263-274.
  • 2Pluim J P W,Maintz J B A,Viergever M A.Mutual information based registration of medical images:a survey[J].IEEE Trans Med Imag, 2003,22( 8 ) : 986-1004.
  • 3Liu Chang-chun,Li Ke,Liu Zhong-guo.Medical image registration by maximization of combined mutual information and edge correlative deviation[C]//IEEE Conference on EMBS,2005:6379-6382.
  • 4Pluim J P W,Maintz J B A,Viergever M A.F-Information measures in medical image registration[J].IEEE Trans Med Imag,2004,23(12): 1508-1516.
  • 5Wachowiaka M P,Smolikova R,Tourassib G D,et al.Similarity metrics based on nonadditive entropies for 2D-3D multimodal biomedical image registration[C]//SPIE 2003:Medical Imaging,2003,5032: 1090-1100.
  • 6Bardera A,Feixas M,Boada I.Normalized similarity measures for medical image registration[C]//SPIE 2004:Medical Imaging,2004,5370: 108-118.
  • 7Studholme C,Hill D L G,Hawkes D J.An overlap invariant entropy measure of 3D medical image alignment[J].Pattern Recognit,1999, 32(1 ):71-86.
  • 8Renyi A.On measures of entropy and information[C]//Proc Fourth Berkeley Symp Math Stat and Probability, 1961,1:547-561.
  • 9Arimoto S.Information-theoretic considerations on estimation problems[J].Information and Control, 1971,19:181-190.
  • 10Evans A C.BrainWeb:online simulated brain database[DB/OL]. [2007-03-01 ].http ://www.bic.mni.mcgill.ca/brainweb.

同被引文献32

  • 1朱方霞,陈华友.确定区间数决策矩阵属性权重的方法——熵值法[J].安徽大学学报(自然科学版),2006,30(5):4-6. 被引量:71
  • 2Roche, A., Pennec, X., Malandain, et al.: Rigid registration of 3D ultrasound with MR images: a new approach combining intensity and gradient information[J], IEEE Transactions on Medical Imaging, 2001, Vol.20, pp. 1038-1049.
  • 3Leroy, A., Mozer, E, Payan, et al.: Rigid registration of freehand 3D ultrasound and CT-Scan kidney images [J]. MICCAI Proceedings, 2004, pp. 837-844.
  • 4Wein, W., Roper, B., Navab: Integrating diagnostic B-mode ultrasonography into CT-based radiation treatment planning [J].IEEE Transactions on Medical Imaging, 2007, pp.866-879.
  • 5Ji S, Wu Z, Hartov A, et al: Mutual-information-based image to patient re-registration using intraoperative ultrasound in image-guided neurosurgery [J], Medical physics, 2008, pp.4612-4624.
  • 6A. Collignon, E Maes, D. Delaere, D. Vandermeulen, et al.: Automated multi-modality image registration based on information theory [J], Computational Imaging and Vision, 1995, Vo. 3, pp.263-274.
  • 7P. Viola and W. M. Wells: Alignment by maximization of mutual information [J], international journal of computer vision, 1997, Vo. 24, pp. 137-154.
  • 8E Maes, D. Vandermeulen, and P. Suetens: Medical image registration using mutual information [J], Proceedings of the IEEE, 2003, vol. 91, no. 10, pp.1699-1722.
  • 9Pluim, J.EW., Maintz, J.B.A., Viergeeer, M.A.: Image registration by maximization of combined mutual information and gradient information [J]. IEEE Trans. Med. Imaging, 2000, Vol. 19 pp.809-814.
  • 10Rueckert, D., Clarkson, M.J.,Hill, et al.: Non-rigid registration using higher-order mutual information[A]. Medical Imaging 2000: Image Processing Proc. SPIE[C] 3979(2000), pp.438-447.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部