期刊文献+

一种基于聚类技术的个性化信息检索方法 被引量:12

Personalized search based on clustering
下载PDF
导出
摘要 实践证明聚类技术是改进搜索结果显示方式的一种有效手段。然而,目前的聚类方法没有考虑到用户兴趣,对于相同的查询,返回给所有用户同样的聚类结果。由此提出一种个性化聚类检索方法。该方法改进了k-means算法,利用该算法对传统搜索引擎返回的结果结合用户兴趣进行聚类,返回针对特定用户的网页簇。实验证明该方法能够提供个性化服务,改善了聚类的效果,提高了用户的检索效率。 Clustering display of search results has been proved an efficient way to organize the Web resources.However,for a given query,clustering results reached by any user are totally identical.A novel search method based on clustering is proposed,which is a modified version of k-means algorithm.The results generated from usual search engine go through a clustering stage based on user interests to create user-specific clusters.Experiments show that it can offer user-specific information needs,improve clustering effectiveness and searching efficiency.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第8期187-188,199,共3页 Computer Engineering and Applications
关键词 聚类 个性化 搜索引擎 clustering personalization search engine
  • 相关文献

参考文献5

  • 1Pretschner A,Gauch S.Ontology based personalized search [C]// Proceeding of the 11th IEEE International Conference on Tools with Artificial Intelligence.Chicago,US:IEEE Press,1999:391-398.
  • 2Desai M,Spink A.An algorithm to cluster documents based on relevance [C]//Information Porcessing and Management,2005,41: 1035-1049.
  • 3Zhang D,Dong Y.Semantic,hierarchical,online clustering of Web search results[C]//Proceedings of APWEB-04,the 6th Asia-Pacific Web Conference, Hangzhou, China, 2004 : 69-78.
  • 4Cai Ke-ke,Bu Jia-jun,Chen Chun.An effcient user-oriented clustering of Web search result [C]//Sunderam V S.LNCS 3516: ICCS 2005,2005 : 806-809.
  • 5张瑜,袁方.基于用户兴趣的个性化信息检索方法[J].山东大学学报(理学版),2006,41(3):128-133. 被引量:8

二级参考文献9

  • 1金玉坚,刘焱.基于用户的个性化智能搜索引擎[J].现代情报,2005,25(7):170-172. 被引量:9
  • 2Pretschner A, Gauch S. Ontology based personalized search[A]. Proceedings of the 11th IEEE International Conference on Tools with Artificial Intelligence [C]. Chicago, US: IEEE Press, 1999. 391 - 398.
  • 3Fang liu, Clement Yu, Weiyi Meng. Personalized web search for improving retrieval effectiveness[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(1): 28 -40.
  • 4Pei-Min Chen, Fong-Chou Kuo. An information retrieval system based on a user profile[J]. Journal of Systems and Software,2000, 54(1):3-8.
  • 5James Allan. Incremental relevance feedback for information filtering [A]. Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval[C]. New York, US: ACM Press, 1996. 270- 278.
  • 6Ugur Cetintemel, Michael J Franklin, C Lee Giles. Self-adaptive user profiles for large-scale data delivery[A]. Proceedings of 16th the International Conference on Data Engineering (ICDE) [C]. San Diego, California: IEEE Computer Society Press, 2000. 622 - 633.
  • 7Dwi H Widyantoro, Thomas R loerger, John Yen. An adaptive algorithm for learning changes in user interests[A]. Proceedings of the 8th ACM International Conference on Information[C]. New York, US:ACM Press, 1999. 405-412.
  • 8Tak W Yah, Hector Garcia-Molina. SIFT-A tool for wide-area information dissemination[A]. Proceedings of the 1995 USE-NIX Technical Conference [C]. New Orleans, US: IEEE Press, 1995. 177-186.
  • 9Michael Pazzani, Daniel Billsus. Learning and revising user profiles: The identification of interesting web sites [J]. Machine Learning, 1997, 27:313 - 331.

共引文献7

同被引文献85

引证文献12

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部