期刊文献+

基于聚类的背景建模与运动目标检测方法 被引量:8

New method for background modeling and moving object detection based on clustering
下载PDF
导出
摘要 为克服目前动态背景建模方法中计算量和存储量大的问题,提出了一种基于聚类的动态背景建模与运动目标分割方法。由于动态背景下每个像素的取值在时间轴上呈多峰分布形式,因此将每个峰看成一个子类,用聚类技术快速实现了动态背景的建模与更新,然后利用建立的背景模型快速、准确地实现运动目标的分割。实验结果表明:提出的背景建模方法能有效捕获并适应背景的动态变化,可显著降低目前动态背景建模方法的计算量和内存需求量,易于在基于DSP或FPGA等硬件系统上实时实现。 In order to reduce the computational time and memory requirement of the existing dynamic background modeling methods,this paper presents a new background modeling and moving object detection method based on clustering.For a dynamic background,the histogram of each pixel value over time is usually in the form of multimodal.Therefore,regarding each peak as a cluster,clustering technique is employed to construct and update the model of a dynamic background.Then by using the established background model,the moving objects are segmented from the background quickly and accurately.Experimental results show that the proposed background modeling method can effectively capture and adapt to the changes in background.In addition,this method outperforms the current background modeling methods in terms of computational time and memory requirement,thus becoming easy to implement for DSP or FPGA based hardware.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第8期193-195,203,共4页 Computer Engineering and Applications
基金 国家高技术研究发展计划( 863)( the National High- Tech Research and Development Plan of China under Grant No.2006AA09Z237)
关键词 背景建模 聚类 运动目标检测 视频监控 background modeling clustering moving object detection video surveillance
  • 相关文献

参考文献11

二级参考文献40

  • 1刘彦宏,杜威,李华.足球视频序列中球员的分割与跟踪算法[J].系统仿真学报,2001,13(S2):90-93. 被引量:7
  • 2SasaG Loncaric S.Spatio-temporal image segmentation using optical flow and clustering algorithm [A]..First Int′l Workshop on Image and Signal Processing and Analysis [C].Pula,Croatia,2000.63-68.
  • 3[1]Horn B K, Schunck B G. Determining optical flow. Artificial Intelligence, 1981, 17(1): 185~203
  • 4[2]Girosi F, Verri A, Torre V. Constraints for the computation of optical flow. Proceedings of the IEEE Workshop on Visual Motion, 1989. 116~124
  • 5[3]Russo P, Marandey V, Bui T,et al. Optical Flow Techniques for Moving Target Detection. SPIE Proceedings, 1990,1383: 62~71
  • 6[4]Black M J, Jepson A D. Estimation optical flow in segmented images using variable-order parametric models with local deformations. IEEE Trans Pattern Analysis and Machine Intelligence, 1996,18(10): 972~986
  • 7[5]Hong E P, Spann M. Robust optical flow computation based on least-median-of-square regression. International Journal of Computer Vision, 1999,31(1): 51~826
  • 8T Kurita,N Otsu,N Abdelmalek.Maximum likelihood thresholding based on population mixture models[J].Pattem Recognition, 1992;25 (10) : 1231-1240.
  • 9P K Sahoo,S Soltani,A K C Wong et al.A survey of thresholding techniques,Computer Vision[J].Graphics and Image Processing,1988; 41 : 233~260.
  • 10J D Yang,Y S Chen,W H Hsu.Adaptive thresholding algorithm and its hardware implementation[J].Pattem Recognition Letters, 1994 ; 15 : 141-150.

共引文献122

同被引文献97

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部