期刊文献+

蕴含K_(1,4)+P_2的可图序列(英文) 被引量:2

On Potentially K_(1,4)+P_2-graphic Sequences
下载PDF
导出
摘要 本文刻划了蕴含K 1,4+P2的可图序列,其中K 1,4+P2是向完全二部图K1,4添加一条被剖分的边后构成的简单图. In this paper,we characterize the potentially K1,4+ P2-graphic sequences,where K 1,4+ P2 be a graph obtained by adding an edge e which is subdivided to complete bipartite graph K 1,4.
作者 王艳
出处 《漳州师范学院学报(自然科学版)》 2008年第1期6-10,共5页 Journal of ZhangZhou Teachers College(Natural Science)
基金 漳州师范学院科研基金资助项目(SK06004)
关键词 度序列 蕴含K1 4+P2的可图序列 graph degree sequence potentially K 1,4+ P2-graphic sequence
  • 相关文献

参考文献1

二级参考文献11

  • 1Erdos, P., Jacobson, M. S., Lehel, J.: Graphs realizing the same degree sequences and their respective clique numbers, in: Y. Alavi et al., (Eds.), Graph Theory, Combinatorics and Applications, John Wiley and Sons,New York, 1, 439-449, 1991
  • 2Gould, R. J., Jacobson, M. S., Lehel, J.: Potentially G-graphical degree sequences, in: Y. Alavi, et al.,(Eds.), Combinatorics, Graph Theory, and Algorithms, New Issues Press, Kalamazoo Michigan, 1,451-460,1999
  • 3Li, J. S., Song, Z. X.: An extremal problem on the potentially Pk-graphic sequence. Discrete Math., 212,223-231 (2000)
  • 4Li, J. S., Song, Z. X.: The smallest degree sum that yields potentially Pk-graphic sequences. J. Graph Theory, 29, 63-72 (1998)
  • 5Li, J. S., Song, Z. X., Wang, P.: An Erdos-Jacobson-Lehel conjecture about potentially Pk-graphic sequences. J. Univ. Sci. Tech. China, 28, 1-9 (1998)
  • 6Li, J. S., Song, Z. X., Luo, R.: The Erdos-Jacobson-Lehel conjecture on potentially Pk-graphic sequences is true. Science in China, Set. A, 41, 510-520 (1998)
  • 7Kleitman, D. J., Wang, D. L.: Algorithm for constructing graphs and digraphs with given valences and factors. Discrete Math., 6, 79-88 (1973)
  • 8Rao, A. R.: The clique number of a graph with given degree sequence, in Proc. Symposium on Graph Theory, A. R. Rao ed., MacMillan and Co. India Ltd., L S. I. Lecture Notes Series, 4, 251-267, 1979
  • 9Rao, A. R.: An Erdos-Gallai type result on the clique number of a realization of a degree sequence,unpublished
  • 10Kezdy, A. E., Lehel, J.: Degree sequences of graphs with prescribed clique size, in: Y. Alavi et al., (Eds.),Combinatorics, Graph Theory, and Algorithms, New Issues Press, Kalamazoo Michigan, 2, 535-544, 1999

共引文献2

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部