摘要
考虑周期边值问题-u″=f(t,u,u′),u(0)=u(2π),u′(0)=u′(2π),其中f满足Carath odory条件。进一步假设f满足Nagumo条件和Lipschitz条件,推广上、下解法和单调迭代方法,得到了介于下、上解之间的解及最大和最小解的存在性。
The periodic boundary value problem - u" = f( t, u, u′ ), u (0) = u (2π), u′ (0) = u′ (2π), where f satisfies Carathrodory condition is studied. The supposition is that f satisfies Nuguma condition and Lipschitz condition, the method of lower and upper solutions and monotone iterative technique to obtain the existence of solutions between lower and upper solutions and maximal and minimal solutions is generalized.
出处
《北京联合大学学报》
CAS
2008年第1期80-83,共4页
Journal of Beijing Union University
关键词
周期边值问题
广义上
下解
单调迭代方法
periodic boundary value problem
generalized upper and lower solutions
monotone iterative technique