期刊文献+

右端是Carath odory函数的二阶微分方程的周期边值问题

Periodic Boundary Value Problems for Second Order Differential Equations With Carath odory Functions
下载PDF
导出
摘要 考虑周期边值问题-u″=f(t,u,u′),u(0)=u(2π),u′(0)=u′(2π),其中f满足Carath odory条件。进一步假设f满足Nagumo条件和Lipschitz条件,推广上、下解法和单调迭代方法,得到了介于下、上解之间的解及最大和最小解的存在性。 The periodic boundary value problem - u" = f( t, u, u′ ), u (0) = u (2π), u′ (0) = u′ (2π), where f satisfies Carathrodory condition is studied. The supposition is that f satisfies Nuguma condition and Lipschitz condition, the method of lower and upper solutions and monotone iterative technique to obtain the existence of solutions between lower and upper solutions and maximal and minimal solutions is generalized.
作者 张立新
出处 《北京联合大学学报》 CAS 2008年第1期80-83,共4页 Journal of Beijing Union University
关键词 周期边值问题 广义上 下解 单调迭代方法 periodic boundary value problem generalized upper and lower solutions monotone iterative technique
  • 相关文献

参考文献8

  • 1Leela S. Monotone method for second order periodic boundary value problem [J]. Nonl Anal, 1983,7(4):349- 355.
  • 2Kannan R, Lakshmikantham V. Existence of periodic solutions of nonlinear boundary value probiems and the method of upper and lower solutions[J]. Appl Anal, 1984(17) : 103 - 113.
  • 3Leela S. Monotone technique for periodic solutions of differential equations[J]. J Math Phy Sci, 1984,18( 1 ) :73 - 82.
  • 4Nieto J J. Nonlinear second order periodic boundary value problem with Caratheodory functions[ J ]. Anal Appl, 1989, (34) :111 - 128.
  • 5Heikkila S, Lakshmikantham V. On the method of upper and lower solutions for discontinuous boundary value problems [ J ]. Nonl Anal, 1994,23(2) :265- 273.
  • 6Bernfeld S, Lakshmikantham V. An introduction to nonlinear boundary value problems[ M]. New York: Academic Press, 1974.
  • 7Heikkila S, Lakshmikantham V. Montone Iterative techniques for discontinuous nonlinear differential equations[ M]. New York: Marcel Dekker, 1994.
  • 8Deimling K. Nonlinear functional analysis[M]. New York: Springer-verlag,1985.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部