期刊文献+

一类带调和势的非线性Klein-Gordon方程

The Instability of a Class of Nonlinear Coupled System
下载PDF
导出
摘要 运用能量和微分、积分不等式技巧,讨论一类带调和势的非线性Klein-Gordon方程utt-Δu+|x|2u+mu=a|u|pu+b|u|qu,x∈RN,t>0,其中,u=u(t,x):R+×RN→C的初值问题,得到了在一定条件下解的不稳定性质。 A class nonlinear Klein-Gordon equation with harmonic potential:utt-△u+|x|^2u+mu=a|u|^pu+b|u|^qu,x∈R^N,t〉0,其中,u=u(t,x):R^+×R^N→Cis studied. The instability of the solution of the system isobtained.
作者 冯远福
出处 《北京联合大学学报》 CAS 2008年第1期84-86,共3页 Journal of Beijing Union University
关键词 非线性Klein—Gordon方程 调和势 爆破 nonlinear Klein-Gordon equation harmonic potential blow-up
  • 相关文献

参考文献7

  • 1Softer A, Weinstein M I. Resonances radiation damping and instability in Hamiltonian nonlinear wave equations[ J]. Invent Math, 1999(136) :7 - 74.
  • 2Shatah J, Strauss W. Instability of nonlinear bound states[J]. Commun Math Phys, 1985(100):173 - 190.
  • 3Kapitanskii L V. Weak and yet weak solutions of semilinear wave equations[J]. Comm Partial Diff Equations, 1994( 19):1629- 1676.
  • 4Wang B X. On existence and scattering for critical and subcritical nonlinear Klein-Gordon equations in H^S [J]. Nonlinear Anal TMA, 1998(31 ) :573 - 587.
  • 5Lindblad H, Sogge C D. On existence and scattering with minimal regularity for semilinear waveequations[J]. J of Functional Anal, 1995(130) :357 - 426.
  • 6Pecher H. L^P-Abschatzungen and Klassiche Losungen Rirnichtlineare wellengeichungen[J]. I Math Z, 1976(150):159- 183.
  • 7ZHANG Jian. Sharp conditions of global existence for nonlinear Schrodinger and Klein-Gordon equations [ J]. Nonlinear Analysis, 2002(48 ) : 191 - 207.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部