期刊文献+

一类基于广义观测器的混沌系统自适应同步方法

Generalized Observer-based Adaptive Synchronization of A Class of Chaotic Systems
下载PDF
导出
摘要 通过设计广义观测器来实现了一类混沌系统的同步。在参数不确定而且带有噪声的条件下,这种基于广义观测器的自适应同步方法不仅完成了驱动与响应系统的同步,而且使得信息信号被正确地接收。不必计算Lipschitz常数,也不必知道不确定参数的范围界限,但是Lyapunov方法仍然保证了误差系统的全局渐近稳定性。最后,通过对Rucklidge混沌系统的数值仿真验证了该方法的有效性。 This paper investigated synchronization problem of a class of chaotic systems via generalized observer method.When some parameters were unknown and there existed noise disturbances in the state equation of chaotic system,the new robust adaptive synchronization scheme proposed not only achieved chaos synchronization,but also received message signal satisfactorily.Although Lipschitz constants of function matrices and bounds of uncertainties were unknown,the Lyapunov approached guarantees the error system stability of the overall systems.Finally,Rucklidge chaotic system was chosen to verify the proposed scheme's success in numerical simulation.
出处 《沈阳农业大学学报》 CAS CSCD 北大核心 2008年第1期73-76,共4页 Journal of Shenyang Agricultural University
基金 国家自然科学基金项目(10371013)
关键词 混沌系统 LIPSCHITZ条件 LYAPUNOV方法 自适应 chaotic system Lipschitz condition Lyapunov approach adaptive control
  • 相关文献

参考文献8

  • 1BOUTAYEB M,DAROUACH M,RAFARALAHY H,Generalized state-space observers for chaotie Synch-ronization and secure communication[J].IEEE Trans Circuits Syst I,2002,49(3):345-349,
  • 2MAHBOOBI S H,SHAHROKHI M,PISHKENARI H N, Observer-based control design for three well-known chaotic systems [J].Chaos, Solitons & Fractals, 2006,29 : 381-392
  • 3祁荣宾,李秋明,罗秋滨,冯汝鹏.基于广义观测器实现混沌系统的同步及信息传输[J].电路与系统学报,2005,10(6):29-34. 被引量:1
  • 4THE-LU LIAO,SHIN-HWA TSAI,Adaptive synchronization of chaotic systems and application to secure communications[J], Chaos,Solitons & Fractals,2000,11 : 1387-1396,
  • 5MAIYIN CHEN,DONGHUA ZHOU,YUN SHANG.A new observer-based synchronization scheme for private communication[J]. Chaos, Solitons & Fractals, 2005,24 : 1025-1030.
  • 6JU H,PARK.Adaptive synchronization of hyperehaolie Chen system with uncertain parameters [J].Chaos,Solitons & Fraetals, 2005,26 : 959-964.
  • 7MOEZ FEKI,BRUNO ROBERT,GUILLAUME GELLE,et al. Secure digital communication using A new observer-based synchronization scheme for private communication[J].Chaos,Sulitons & Fractals,2005,24: 1025-1030.
  • 8陈明杰,李殿璞,张爱筠.混沌系统的一种广义同步方法[J].哈尔滨工程大学学报,2005,26(1):59-62. 被引量:3

二级参考文献15

  • 1方锦清.非线性系统中混沌控制方法、同步原理及其应用前景(二)[J].物理学进展,1996,16(2):137-202. 被引量:117
  • 2KOLARLAREV L , PARLITZ U. General approach for chaotic synchronization with application to communication[J] .Phys Rev Lett, 1995,74(25): 5028-5031.
  • 3KOLARLAREV L, PARLITZ. U. Generalized synchronization, predictability, and R equivalence of unidirectionally coupled dynamical system[J] .Phys Rev Lett, 1996, 76(11): 1816-1819.
  • 4YANG Tao, YANG Linbao, YANG Chunmei . Breaking chaotic switching using generalized synchronization:examples [J]. IEEE Trans on Circuits Syst, 1998, 45(10):1062-1067.
  • 5YANG T ,CHUA L O.Generalized synchronization of chaos via Linear Transformations[J] .Int J Bifurcation and Chaos,1999 ,9(1): 215-219.
  • 6HUNT B,YORKE J. Differentiable generalized synchronization of chaos[J]. Phys Rev E, 1997,55(4): 4029-4034 .
  • 7RULKOV N F. SUSHCHIK M M , TSIMRING L S, et al. Generalized synchronization of directionally coupled chaotic system[J]. Phys Rev E,1995,51(2): 980-994.
  • 8F Ricardo, J O Ramon, S P Gualberto. A chaos-based communication scheme via robust asymptotic feedback [J]. IEEE Trans. Circuits Syst. I, 2001, 48(10): 1161-1169.
  • 9Jiang Z P. A note on chaotic secure communication systems [J]. IEEE Trans. Circuits Syst. I, 2002, 49(1): 92-96.
  • 10Liao T L, Huang N S. An observer-based approach for chaotic synchronization with application to secure communications [J]. IEEE Trans. Circuits Syst. I, 1999, 46(9): 1144-1150.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部