期刊文献+

基于局部self-concordant障碍函数的全牛顿步多项式时间算法(英文) 被引量:1

A Full-Newton Step Polynomial-time Algorithm Based on a Local Self-concordant Barrier Function for Linear Optimization
下载PDF
导出
摘要 由Nesterov和Nemirovski^([4])创立的self-concordant障碍函数理论为解线性和凸优化问题提供了多项式时间内点算法.根据self-concordant障碍函数的参数,就可以分析内点算法的复杂性.在这篇文章中,我们介绍了基于核函数的局部self-concordant障碍函数,它在线性优化问题的中心路径及其邻域内满足self-concordant性质.通过求解此障碍函数的局部参数值,我们得到了求解线性规划问题的基于此局部Self-concordant障碍函数的纯牛顿步内点算法的理论迭代界.此迭代界与目前已知的最好的理论迭代界是一致的. The theory of self-concordant barriers developed by Nesterov and Nemirovski [4] provides an algorithm with polynomial complexity applicable to linear and convex optimization problem. The parameters of a self-concordant barrier function can be used to compute the complexity bound of the algorithm considered. In this paper we present a local self-concordant barrier function based on a kernel function in the neighborhood of the central path of linear optimization problem. We derive the local values of parameters of this barrier function and obtain the complexity bound of a full-Newton step interior-point algorithm based on this local self-concordant function for linear optimization problem. The bound matches the best known existing complexity bounds.
机构地区 上海大学数学系
出处 《运筹学学报》 CSCD 北大核心 2008年第1期1-15,共15页 Operations Research Transactions
基金 the grant of National Science Foundation of China 10771133 the grant of Shanghai Pujiang Program 06PJ14039 The second author,corresponding author,and the third author thank the support of Shanghai Leading Academic Discipline Project J50101 The third author thanks the support of Innovative Foundation of Shanghai University A10010107411.
关键词 运筹学 线性规划 障碍函数 self-concordant函数 内点算法 多项式时间算法 Operations research, linear optimization, barrier function, self-concordant function, interior-point methods, polynomial-time complexity
  • 相关文献

参考文献7

  • 1Bai Y.Q., E1 Ghami M. and Roos C. A comparative study of kernel functions for primal- dual interior-point algorithms in linear optimization[J]. SIAM Journal on Optimization, 2004, 15(1): 101-128.
  • 2Bai Y.Q., Guo J. L. and Roos C. A New Kernel Function Yielding the Best Known Complexity Bound for Primal-Dual Interior-Point Algorithms in Linear Optimization[J]. Submitted to the Acta Mathematica Sinica, August 2006.
  • 3Boyd S. and Vandenberghe L. Convex Optimization[M]. Cambridge University Press, 2004.
  • 4Neterrov R.E. and Nemirovskii A.S, Interior Point A Ploynomial Methods in Convex Programming: Theory and Algorithms[J]. Number 13 in Studies in Applied Mathematics. SIAM, Philadephia, USA, 1994.
  • 5Peng J., Roos C. and Terlaky T. Self-regular functions and new search directions for linear and semidefinite optimization[J]. Mathematical Programming, Set. A, 2002, 93: 129-171.
  • 61%oos C. and Mansouri H. Full-Newton step polynomial-time methods for linear optimization based on locally self-concordant barrier functions(Manuscript). Department of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, The Netherlands, 2006.
  • 7Roos C., Terlaky T. and Vial J. Ph. Theory and Algorithms for Linear Optimization. An Interior-Point Approach[M]. John Wiley &: Sons, Chichester, UK, 1997.

同被引文献78

引证文献1

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部