期刊文献+

基于EM-PCA和级联分类器的人脸检测 被引量:3

Face detection based on EM-PCA and hierarchical classification
下载PDF
导出
摘要 为了提高人脸检测的速度及鲁棒性,提出了一种基于级联分类器和期望最大、主成分分析(EM-PCA)的人脸检测方法.该方法在训练阶段利用不同分辨率的训练样本来训练2个fisher线性分类器,再利用EM-PCA提取特征来训练非线性支持向量机(SVM);在检测阶段,首先通过2个fisher线性分类器快速过滤掉大量的背景区域,再利用非线性支持向量机对余下的候选区域进行进一步验证,以确认是否为人脸.实验结果证明了该方法的有效性和正确性. In order to improve the speed and robust of detecting human face,an algorithm of face detection based on EM-PCA and hierarchical classification is presented.In the training step,different resolutions of train samples are used for training two kinds of fisher linear discrimination,and train the nonlinear SVM by using the feature extracted by means of EM-PCA.In the detection step,the fisher linear discrimination is used for excluding large parts of backgrounds,and use the SVM to perform the final detection.Experimental results show that the new algorithm is feasible and efficient.
出处 《中国科学院研究生院学报》 CAS CSCD 2008年第2期216-223,共8页 Journal of the Graduate School of the Chinese Academy of Sciences
基金 国家自然科学基金(60575023) 安徽省自然科学基金(070412054) 教育部博士点基金(20050359012)资助
关键词 人脸检测 级联分类器 EM-PCA FISHER 支持向量机 face detection,hierarchical classification,EM-PCA,fisher,SVM
  • 相关文献

参考文献5

二级参考文献31

  • 1李晓华,沈兰荪.基于小波压缩域的统计纹理特征提取方法[J].电子学报,2003,31(z1):2123-2126. 被引量:8
  • 2田巍,黄祥林,沈兰荪.一种用于DCT压缩域的人脸检测算法[J].测控技术,2004,23(5):41-43. 被引量:2
  • 3[1]M.H.Yang.Detecting face in images:A survey[J].IEEE Trans.Pattern Analysis and Machine Intelligence,2002,24 (1):34-58.
  • 4[2]H.S.A Statistical Method for 3D Object Detection Applied to Faces and Cars[J].IEEE Conference on Computer Vision and Pattern Recognition,2000,(1):746-751.
  • 5[4]R.L.Hsu.Face detection in color images[C].International Conference on Image Processing,2001:1046-1049.
  • 6[5]C.Liu.A Bayesian discriminating feature method for face detection[J].IEEE Trans.Pattern Analysis and Machine Intelligence,2003,25(6):725-740.
  • 7[6]P.Shih.Face detection using discriminating feature analysis and support vector machine in video[C].Proceedings of the 17th International Conference on Pattern Recognition,2004,2:407-410.
  • 8VAPNIKVN 张学工译.统计学习理论的本质[M].清华大学出版社,2000..
  • 9Hjelm as E, Low B K. Face detection: A survey[J]. Computer Vision and Image Understanding, 2001,83(3) :236-274.
  • 10Moghaddam B, Pentland A. Probahilistic visual learning for object representation[J] IEEE Trans. Pattern Analysis and Machine Intelligence, 1997,19(7):696-720.

共引文献70

同被引文献16

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部