摘要
将遗传算法与BP神经网络相结合,建立预报高炉铁水质量的神经网络模型。通过将遗传算法引入BP神经网络,提高了网络模型的预报精度,结果表明,此网络模型提高了训练速度和泛化能力,对高炉铁水质量预报具有较好的适用性。
Combining Genegic Algorithm and BP Neural Network, Neural Network for prediction of the quality of molten iron is established. Preciseness of the Neural Network is improved for Genegic Algorithm is used into BP Neural Network. The results show that this Network model speeds up the process of training and popularity capacity,suits for the prediction of the quality of molten iron.
出处
《仪器仪表用户》
2008年第2期2-4,共3页
Instrumentation
关键词
神经网络
遗传算法
SI含量
S含量
预报
neural network
genegic algorithm
si content
s content
prediction