期刊文献+

关于驾驶员眼睛检测与跟踪的研究 被引量:2

Study on the eye location method and track algorithm of driver
下载PDF
导出
摘要 本文采用红外LEDs和CMOS图像传感器获取人脸图像和眼睛候选区域,再用支撑向量机(SVM)眼睛分类器验证并确定眼睛的位置,完成对驾驶员眼睛的准确定位;在眼睛的跟踪上,针对Kalman滤波和Mean Shift理论本身的缺陷,提出Kalman滤波和Mean Shift相结合的跟踪算法,不仅提高了跟踪的效率和跟踪的鲁棒性,还实现了模板的自动更新。 We use IR( infra- red ) LEDs and CMOS sensors to get the face image and the eye candidates region in the article, then use SVM eye classifier to identify the real eye regions accurate. To improve theoretic limitation of Kalman filter and Mean Shift, an algorithm for tracking of eyes, which combines Mean Shift and Kalman filter, is proposed. The proposed algorithm was found to be reasonably robust and accurate in tracking the eyes. And it update the model.
出处 《仪器仪表用户》 2008年第2期4-6,共3页 Instrumentation
关键词 眼睛定位 SVM 眼睛跟踪 KALMAN滤波 Mean SHIFT eye location SVM eye tracking Kalman filter Mean Shift
  • 相关文献

参考文献5

二级参考文献38

  • 1李齐,刘志文.基于自适应模板的图像跟踪算法[J].微计算机信息,2004,20(9):21-22. 被引量:10
  • 2宋加涛,刘济林,池哲儒,王蔚.人脸正面图像中眼睛的精确定位[J].计算机辅助设计与图形学学报,2005,17(3):540-545. 被引量:13
  • 3彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 4D. COMANICIU, P. MEER. Mean shift: a robust application toward feature space analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.
  • 5D. COMANICIU, P. MEER. Robust analysis of feature spaces: color image segmentation [A]. Proc, 1997 IEEE conf.Computer Vision and Pattern Recognition[C]. San Juan, Puerto Rico: IEEE, 1997. 750-755.
  • 6Changjiang YANG, Ramani DURAISWAMI, Larry DAVIS. Similarity measure for nonparametric kernel density based object tracking[A]. Eighteenth Annual Conference on Neural Information Processing Systems[C]. Victoria, British Columbia,Canada: NIPS, 2004
  • 7Robert T. COLLINS. Mean-shift blob tracking through scale space [J]. 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'03), 2003, 2: 234-240.
  • 8K. NUMMIARO, E. Koller-MEIER, L.Van GOOL. Color features for tracking non-rigid objects. Special Issue on Visual Surveillance [J]. Chinese Journal of Automation, 2003, 29(3): 345-355.
  • 9D. COMANICIU, V. RAMESH, E MEER. Kernel-based object tracking [J]. IEEE Transactions. on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
  • 10K. FUKUNAGE, L, D. HOSTETLER. The estimation of the gradient of a density function with application in pattern recognition [J]. IEEE Trans. on Information Theory, 1975, 21(1): 32-40.

共引文献85

同被引文献14

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部