期刊文献+

自适应背景下运动目标阴影检测算法研究 被引量:9

Shadow Detecting for Moving Objects Based on Self-adaptive Background
下载PDF
导出
摘要 智能视频监控系统的主要难点就是如何检测出运动目标的阴影并将他去除。用一种改进的自适应背景检测算法准确检测运动物体的位置和形状。然后根据阴影的颜色变化、结构等特点,分别采用基于RGB彩色模型和基于HSV彩色模型的阴影检测法检测阴影。在仿真实验中,对两种方法进行定量和定性的分析,在阴影检测率、识别率、复杂度和实时性等方面做出了比较。结果表明,两种方法都有较强的适应性,具有良好的阴影检测效果。根据各自的优缺点,可应用在不同领域中。 One of the main difficulties in intelligent video surveillance is how to detect and suppress the shadow in the scene, The moving objects detection algorithm uses an improved background subtraction algorithm which is based on self--adaptive background to detect the position and the shape of objects. Then according to the shadow's characters such as the color variation and the structure,two shadow detection algorithms which respectively based on the RGB color model and the HSV color model are introduced. In experiment,the two shadow detection algorithms are analyzed on the shadow detection accuracy, the shadow discrimination accuracy,the complexity and the real - time capability, and made the comparison of them. The resuits of experiment show that the shadow detection algorithms are effective and robust, and can be applied on different fields according to their advantages and disadvantages.
出处 《现代电子技术》 2008年第6期59-61,共3页 Modern Electronics Technique
基金 国防预研课题"基于多模信息融合的目标识别与跟踪技术研究"
关键词 运动目标检测 RGB空间 HSV空间 阴影检测 moving objects detection,RGB color model HSV color model shadow detection
  • 相关文献

参考文献6

  • 1Cucchiara R, Prati A, Grana C, et al. Detecting Moving Objects,Ghosts and Shadows in Video Streams[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003, 25(10).1 337- 1 342.
  • 2陈柏生,陈锻生.基于归一化rgb彩色模型的运动阴影检测[J].计算机应用,2006,26(8):1879-1881. 被引量:15
  • 3Wang Zhou, Bovik A C, Sheikh H R, et al. Image Quality Assessment;From Error Visibility to Structural slmilarity[J]. IEEE Transactions on Image Processing, 2004,13 (4) : 600 - 612.
  • 4Collins R. A System for Video Surveillance and Monitoring: VSAM Final Report. Carnegie Mellon University,Technical Report: CMU - RI - TR- 00 - 12,2000.
  • 5Yang T,Stan Z Li,Pan Q, et al. Real- time and Accurate Segmentation of Moving Objects in Dynamic Scene[J]. In Proceedings of the ACM 2 nd International Workshop on Video Surveillance & Sensor Networks, 2004 : 136 - 143.
  • 6张继平,刘直芳.视频中运动目标的实时检测和跟踪[J].计算机测量与控制,2004,12(11):1036-1039. 被引量:8

二级参考文献12

  • 1WANG C,HUANG L,ROSENFELD A.Detecting clouds and cloud shadows on aerial photographs[J].Pattern Recognition Letters,1991,12(1):55-64.
  • 2YONEYAMA A,YEH CH,KUO C-C J.Moving cast shadow elimination for robust vehicle extraction based on 2D joint vehicle/shadow models[A].Proceedings of IEEE Conference on Advanced Video and Signal Based Surveillance[C].Los Angeles,2003.229-236.
  • 3FUNKA-LEA G,BAJCSY R.Combining color and geometry for the active,visual recognition of shadows[A].Proceedings of Fifth International Conference on Computer Vision[C].Cambridge,MA,1995.203-209.
  • 4CUCCHIARA R,GRANA C,PICCARDI M,et al.Detecting moving objects,ghosts,and shadows in video streams[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(10):1337-1342.
  • 5NADIMI S,BHANU B.Physical models for moving shadow and object detection in video[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(8):1079-1087.
  • 6SHAFER SA.Using color to separate reflection components[J].Color research and applications,1985,10(4):210-218.
  • 7Karamann K,Brandt A. Moving object recognition using an adaptive background memory [A].In Proc. Time-Varying Image Processing and Moving Object Recognition[C]. V. Cappellini, Ed., 1990:35-40.
  • 8Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking [A]. In Proc. IEEE Conference on Computer Vision and Pattern Recognition[C].Fort Collins, Colorado,1999:246-252.
  • 9Barron J.Performance of optical flow techniques [J].International Journal Computer Vision,1994,(12):42-77.
  • 10Surendra G. Detection and classification of vehicles [J]. IEEE Trans. On Intelligent Transportation Systems, 2002,(3): 37-47.

共引文献21

同被引文献127

引证文献9

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部