期刊文献+

Existence of Formal Conservation Laws of a Variable-Coefficient Korteweg-de Vries Equation from Fluid Dynamics and Plasma Physics via Symbolic Computation 被引量:2

Existence of Formal Conservation Laws of a Variable-Coefficient Korteweg-de Vries Equation from Fluid Dynamics and Plasma Physics via Symbolic Computation
下载PDF
导出
摘要 Employing the method which can be used to demonstrate the infinite conservation laws for the standard Kortewegde Vries (KdV) equation, we prove that the variable-coeFficient KdV equation under the Painlevé test condition also possesses the formal conservation laws. Employing the method which can be used to demonstrate the infinite conservation laws for the standard Kortewegde Vries (KdV) equation, we prove that the variable-coeFficient KdV equation under the Painlevé test condition also possesses the formal conservation laws.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2008年第3期878-880,共3页 中国物理快报(英文版)
基金 Supported by the Key Project of Chinese Ministry of Education under Grant No 106033, the National Natural Science Foundation of China under Grant Nos 60372095 and 60772023, Open Fund of the State Key Laboratory of Software Development Environment under Grant No SKLSDE-07-001, Beijing University of Aeronautics and Astronautics, the National Basic Research Programme of China under Grant No 2005CB321901, the Green Path Programme of Air Force of the Chinese People's Liberation Army, the Cheung Kong Scholars Programme of the Ministry of Education of China and Li Ka Shing Foundation of Hong Kong.
关键词 NONLINEAR EVOLUTION-EQUATIONS SOLITARY WAVES MATHEMATICAL APPROACH POSITONIC SOLUTIONS KDV EQUATION DUSTY PLASMA MODEL TRANSFORMATION SOLITONS DEVRIES NONLINEAR EVOLUTION-EQUATIONS SOLITARY WAVES MATHEMATICAL APPROACH POSITONIC SOLUTIONS KDV EQUATION DUSTY PLASMA MODEL TRANSFORMATION SOLITONS DEVRIES
  • 相关文献

参考文献32

  • 1Capasso F, Sirtori C, Faist J, Sivco D L and Cho S N G 1992 Nature 358 565
  • 2Matveev V 1992 Phys. Lett. A 166 209
  • 3Jaworski M and Zagrodzinski J 1995 Chaos, Solitons and Fractals 5 2229
  • 4Chen Y, LiB and ZhangH Q 2003 Int. J. Mod. Phys. C 14 99
  • 5Chen Y, LiB and ZhangH Q 2003 Int. J. Mod. Phys. C 14 471
  • 6Chen Y and Yu Z 2003 Int. J. Mod. Phys. C 14 601
  • 7Xie Y C 2004 Chaos, Solitons and Fractals 20 337
  • 8Cao Y T and Tian B 2001 Int. J. Mod. Phys. C 12 1431
  • 9Yi S, Cooney J L, Kim H S, Amin A, El-Zein Y and Lon- ngren K E 1996 Phys. Plasmas 3 529
  • 10Das G and Sarma J 1998 Phys. Plasmas 5 3918

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部