摘要
考虑方程y″(t)=f(t,y(t),y′(t))+e(t)在边值条件y′(a)=0,y(b)=∑∞i=1aiy(ξi)下解的存在唯一性,其中f满足L2-Carath啨odory条件.在L2[a,b]中利用压缩映象原理得到解的存在唯一性结果.
Abstract: In this paper, the author discusses the existence and uniqueness of solutions to the equation
y″(t)=f(t,y(t),y′(t))+e(t),a≤t≤b,
with ∞ - Point boundary value problem y′(a)=0,y(b)=∑i=1^∞aiy(ξi).By contraction mapping principle, we get an optimum result in Banach space L^2(a, b) of the existence and uniqueness of solutions if f satisfies L^2 - Carathéodory conditions.
出处
《兰州工业高等专科学校学报》
2008年第1期6-8,共3页
Journal of Lanzhou Higher Polytechnical College
关键词
无穷多点边值问题
压缩映象原理
最优结果
∞ - Point boundary value problem
contraction mapping principle
optimum result