期刊文献+

无穷多点边值问题解的存在唯一性

Existence and Uniqueness of Solutions to ∞-Point Boundary Value Problem
下载PDF
导出
摘要 考虑方程y″(t)=f(t,y(t),y′(t))+e(t)在边值条件y′(a)=0,y(b)=∑∞i=1aiy(ξi)下解的存在唯一性,其中f满足L2-Carath啨odory条件.在L2[a,b]中利用压缩映象原理得到解的存在唯一性结果. Abstract: In this paper, the author discusses the existence and uniqueness of solutions to the equation y″(t)=f(t,y(t),y′(t))+e(t),a≤t≤b, with ∞ - Point boundary value problem y′(a)=0,y(b)=∑i=1^∞aiy(ξi).By contraction mapping principle, we get an optimum result in Banach space L^2(a, b) of the existence and uniqueness of solutions if f satisfies L^2 - Carathéodory conditions.
作者 金立芸
出处 《兰州工业高等专科学校学报》 2008年第1期6-8,共3页 Journal of Lanzhou Higher Polytechnical College
关键词 无穷多点边值问题 压缩映象原理 最优结果 ∞ - Point boundary value problem contraction mapping principle optimum result
  • 相关文献

参考文献5

  • 1马如云,白定勇.二阶非线性边值问题解的存在唯一性定理[J].纯粹数学与应用数学,1998,14(2):61-64. 被引量:5
  • 2Antonion Tineo.An Existence Theorem For a Class of BVP without Reatrictions of the Bernstein - Naguno Type[J]. J Math Anal Appl, 1993,175:25 - 32.
  • 3R. K. Pandey, A. K. Verma. Existence uniqueness result for a class of singular boundary value Problems-Ⅱ [J] .J Math Anal Appl,2008,338:1387 - 1396.
  • 4Yulian An. Existence of solutions for a three - point boundary value problem at resonance, Nonlinear Analysis[J].2008,65 : 1633 - 1643.
  • 5P.B. Baily,L. F.Shampine & Waltman P.E.Nonlinear Two Point Boundary Value Problems Academic Press[ M] . New York, 1968.

二级参考文献6

  • 1P. B. Baily, L. F. Shampine & Waltman P. E. Nonlinear Two Point Boundary Value Problems, Academic Press ,New York (1968).
  • 2L. Collatz, The Numerical Treatment of Differential Equations, 3rd ed, Springer, Berlin (1960).
  • 3W. J. Coles and Sherman, Two-point problems for nonlinear second order ordinary differential equations.513 ,Math. Res. Center,Univ. of Wisconsin, Madison, Wisconsin (1964).
  • 4CH. Fabry and P. Habets, The Picard boundary value problem for nonlinear second order vector difterential equations. J. Differential Equation. 42(1981),186-198.
  • 5A. Granas, R. Guenther, and J. W. Lee, Nonlinear boundary value problems for some classes of ordinary differential equations, Rocky Mountain J.math.10(1979),35-58.
  • 6Antonion Tineo, An Existence Theorem for a class of BVP without Restrictions of the Bernstein-Nagumo Type, J.Math. Anal. and Appl. 175(1993),25-32.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部