期刊文献+

Kernel based visual tracking with scale invariant features 被引量:2

Kernel based visual tracking with scale invariant features
原文传递
导出
摘要 The kernel based tracking has two disadvantages: the tracking window size cannot be adjusted efficiently, and the kernel based color distribution may not have enough ability to discriminate object from clutter background. For boosting up the feature's discriminating ability, both scale invariant features and kernel based color distribution features are used as descriptors of tracked object. The proposed algorithm can keep tracking object of varying scales even when the surrounding background is similar to the object's appearance. The kernel based tracking has two disadvantages: the tracking window size cannot be adjusted efficiently, and the kernel based color distribution may not have enough ability to discriminate object from clutter background. For boosting up the feature's discriminating ability, both scale invariant features and kernel based color distribution features are used as descriptors of tracked object. The proposed algorithm can keep tracking object of varying scales even when the surrounding background is similar to the object's appearance.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2008年第3期168-171,共4页 中国光学快报(英文版)
基金 the National Natural Science Foundation of China under Grant No.60775022
关键词 ALGORITHMS COLOR Algorithms Color
  • 相关文献

参考文献8

  • 1David G. Lowe.Distinctive Image Features from Scale-Invariant Keypoints[J].International Journal of Computer Vision.2004(2)
  • 2Michael Isard,Andrew Blake.CONDENSATION—Conditional Density Propagation for Visual Tracking[J].International Journal of Computer Vision.1998(1)
  • 3A.Li,Z.Jing,and S.Hu. Chin.Opt.Lett . 2005
  • 4D.Comaniciu,V.Ramesh,and P.Meer. IEEE Trans. Pattern Anal.Mach.Intell . 2003
  • 5D.G.Lowe. International Journal of Computer Vision . 2004
  • 6N.Peng,J.Yang,and Z.Liu. Optical Engineering . 2005
  • 7R.Collins. Proceedings of 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition . 2003
  • 8M.Isard,and A.Blake. International Journal of Computer Vision . 1998

同被引文献33

  • 1彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 2朱胜利,朱善安,李旭超.快速运动目标的Mean shift跟踪算法[J].光电工程,2006,33(5):66-70. 被引量:50
  • 3侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 4FUKANAGA K, HOSTETLER D. The estimation of the gradient of a density function, with applications in pattern recognition [ J]. IEEE Transactions on Inforation Theory, 1975, 21 (1) : 32 - 40.
  • 5COMANICIU D, RAMESH V, MEER P. Real-time tracking of non- rigid objects using Mean-Shift [ C]///IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Press, 2000, 2:142 - 149.
  • 6COMANICIU D. Nonparametric robust methods for computer vision [ D]. New Jersey: The State University of New Jersey, 2000.
  • 7COMANICIU D, RAMESH V, MEER P. Kernel-based object tracking[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2003, 25(5): 564-577.
  • 8COLLINS R T. Mean-Shift blob tracking through scale space[ C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Vancouver, Canada: IEEE Press, 2003, 2: 234- 240.
  • 9LINDEBERG T. Feature detection with automatic scale selection [ J]. International Journal of Computer Vision, 1998, 30(2) : 79 - 116.
  • 10TRAN S, DAVIS L. Robust object tracking with regional affine invariant features [ EB/OL]. [ 2008 - 10 - 10]. http://www, cs. umd. edu/- sontran/tracking_iccv07. pdf.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部