期刊文献+

一种基于旋转体的摄像机定位方法 被引量:2

Determining Camera Pose Based on Body of Revolution
下载PDF
导出
摘要 基于旋转体的摄像机定位是单目合作目标定位领域中的涉及较少并且较为困难的一个问题,传统的基于点基元、直线基元及曲线基元的定位方法在用于旋转体定位过程中都存在相应的问题.文中设计了一种由4个相切椭圆构成的几何模型,该模型环绕于圆柱体表面,利用二次曲线的投影仍然是二次曲线的特性和椭圆的相应性质能够得到唯一确定模型位置的3个坐标点,从而将旋转体定位问题转化为P3P问题.在对P3P的解模式区域进行分析后,推导了根据模型上可视曲线的弯曲情况来确定P3P问题解模式的判别方法,并给出证明过程.仿真实验表明了这种模型定位方法的有效性.最后利用这个模型引导机械手完成目标定位的实验. Camera pose determination for body of revolution with single camera is a problem that is referred little and more puzzled. Traditional pose estimation methods using point features, straight line features and conics features have corresponding problems when they are applied to pose computation based on body of revolution. This paper presents a geometric model composed of four tangential ellipses that surround the surface of a cylinder. By using the preserved characteristic of conics and the corresponding characteristic of ellipse, three control points which can determine the pose of the model uniquely are obtained, thus the current problem of is converted into the problem of P3P. At the same time, a judgment method is developed to get the solution mode of P3P according to the curving style of eyeable arc on the model based on the analysis of the solution mode region of P3P. After that the proving process is presented. The effectiveness of the location method based on model is confirmed by simulation. At last, the model is used to lead a manipulator to locate the object in an experiment.
出处 《计算机学报》 EI CSCD 北大核心 2008年第3期493-501,共9页 Chinese Journal of Computers
基金 国家"八六三"高技术研究发展计划项目基金(2004AA420090)资助
关键词 旋转体 P3P问题 多解现象 唯一解 body of revolution the P3P problem multi-solution phenomenon unique solution
  • 相关文献

参考文献4

二级参考文献16

  • 1王建刚,王寻羽,白雪生,徐心平.基于神经网络的三维物体姿态测定[J].机器人,1996,18(2):83-90. 被引量:2
  • 2[1]Fishier M A, Bolles R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 1981, 24(6): 381~395
  • 3[2]Abidi M A, Chandra T. A new efficient and direct solution for pose estimation using quadrangular targets: Algorithm and evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(5): 534~538
  • 4[3]Yuan J S C. A general photogrammetric method for determining object position and orientation. IEEE Transactions on Robotics and Automation, 1989, 5(2): 129~142
  • 5[4]Haralic R M, Lee C, Ottenberg K, Nolle M. Analysis and solutions of the three point perspective pose estimation problem. In:Proceedings of the International Conference on Computer Vision and Pattern Recognition, Hawaii, 1991. 592~598
  • 6[5]Dementhon D, Davis L S. Exact and approximate solutions of the perspective-three-point. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14(11):1100~1105
  • 7[6]Wolfe W J, Jones K. Camera calibration using the perspective view of a triangle. In: Proceedings of SPIE Conference Automated Inspection Measurement, Cambridge, 1986, 730:47~50
  • 8[7]Wolfe W J, Mathis D, Weber C, Magee M. The perspective view of three points. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(1): 66~73
  • 9[9]Gao X S, Hou X R, Tang J L, Cheng H F. Complete solutions classification for the perspective- three-point problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, to be Accepted
  • 10Su Cheng,Chin J Electron,1998年,7卷,2期

共引文献69

同被引文献14

  • 1钟志光,易建强,赵冬斌.一种基于点对的相机几何标定方法[J].机器人,2005,27(1):31-34. 被引量:8
  • 2Fischler M A, Bolles R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[J].Graphics and Image Processing, 1981,24 (6) :381-395.
  • 3Ansar A, Daniilidis K. Linear pose estimation from points or lines[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2003,25 ( 5 ) : 578-589.
  • 4Haralick R M, Lee C, Ottenberg K, et al. Analysis and solutions of the three point perspective pose estimation problem[C]. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Maui, HI, IEEE Press,1991:592-598.
  • 5Wolfe W J, Mathis D, Sklair C W, et al. The perspective view of three points[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1991, 13(1) :66-73.
  • 6Quan Long, Lan Zhongdan. Linear N-point camera pose determination[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1999,21 (8) : 774-780.
  • 7Wang G h,Wu J, Ji Z q. Single view based pose estimation from circle or parallel lines[J]. Pattern Recognition Letters, 2008,29 : 977-985.
  • 8Wang G H, Wang S, Gao X, et al. Three dimensional reconstruction of structured scenes based on vanishing points[C]. Proc. PCM, Berlin Heidelberg, Springer-Verlag Press, 2006:935-942.
  • 9Wong K K, Mendonca P R S, Cipolla R. Camera calibration from surfaces of revolution[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2003,25(2):147-161.
  • 10Christoudias C M, Georgescu B, Meer P. Synergism in low level vision[J]. Int. Conf. on Pattern Recognition, 2002,4 : 150-155.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部