期刊文献+

基于遗传算法的投影寻踪聚类 被引量:3

Projection Pursuit Clustering Method Based on Genetic Algorithm
下载PDF
导出
摘要 传统的投影寻踪聚类算法PROCLUS是一种有效的处理高维数据聚类的算法,但此算法是利用爬山法(Hill climbing)对各类中心点进行循环迭代、选取最优的过程,由于爬山法是一种局部搜索(local search)方法,得到的最优解可能仅仅是局部最优。针对上述缺陷,提出一种改进的投影寻踪聚类算法,即利用遗传算法(Genetic Algorithm)对各类中心点进行循环迭代,寻找到全局最优解。仿真实验结果证明了新算法的可行性和有效性。 The traditional projection pursuit clustering algorithm PROCLUS[ 1,2] is an effective method to deal with high- dimensional data clustering. However its vital shortcoming is using Hill climbing method to search the optimal prototypes of the clusters, which is easy to run into a local optimum. An improved clustering algorithm is proposed in this paper. Using Genetic Algorithm which has good global and local search capability to search the optimal prototypes of the clusters, one will get global optimum. Simulated experiments show the feasibility and efficiency of the proposed method.
出处 《统计与信息论坛》 CSSCI 2008年第3期19-22,共4页 Journal of Statistics and Information
基金 国家自然科学基金项目<生物医学中统计方法研究>(10431010) 教育部重点基地重大项目<空间统计学及其应用研究>(05JJD910001)
关键词 投影寻踪 聚类算法 遗传算法 projection pursuit clustering algorithm genetic algorithm
  • 相关文献

参考文献4

  • 1Aggarwal C, Proeopiuc C. Fast algorithms for projected clustering[R]. In Proc philadelphia. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD'99), 1999.
  • 2Aggarwal C, Yu P. Finding generalized projected clusters in high dimensional space[R], pallas: ACM SIGMOD Int. Conf. on Management of Data (SIGMOD'00), 2000.
  • 3张莉,周伟达,焦李成.核聚类算法[J].计算机学报,2002,25(6):587-590. 被引量:195
  • 4Goldberg DE. Genetic Algorithms in Search, optimization and machine learning[ M]. NewYork: Addison-Wasley, 1989.

共引文献194

同被引文献33

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部