期刊文献+

La_(1.9)Sr_(0.1)Ni_(0.9)Cu_(0.1)O_(4+δ)混合导体的合成与导电性能研究

Synthesis and electrical properties of La_(1.9)Sr_(0.1)Ni_(0.9)Cu_(0.1)O_(4+δ) mixed conductor
下载PDF
导出
摘要 采用氨基多羧酸配合物法合成La1.9Sr0.1Ni0.9Cu0.1O4+δ超细粉料,对合成产物的结构和性能进行了表征。研究结果表明,配合物前驱体经900℃保温2h热处理即形成单一的K2NiF4结构,合成粉料的颗粒细小、均匀(约100nm)。X射线衍射Rietveld分析结果显示,La1.9Sr0.1Ni0.9Cu0.1O4+δ为正交结构(空间群为Fmmm)。与La1.9Sr0.1NiO4+δ相比,La1.9Sr0.1Ni0.9Cu0.1O4+δ表现出较好的烧结性能。与La2Ni0.9Cu0.1O4+δ相比,如La1.9Sr0.1Ni0.9Cu0.1O4+δ具有较高的总电导率。在1400℃烧结的La1.9Sr0.1Ni0.9Cu0.1O4+δ的相对密度达到95.3%,在600~800℃的测试温度范围内陶瓷样品的总电导率为78~99S/cm,在800℃的测试温度下陶瓷样品的氧离子电导率为2.0×10^-2S/cm。 La1. 9Sr0. 1Ni0. 9Cu0.1O4+δ powder was synthesized by a polyarninocarboxylate complex method, and the structure and properties of synthesized powder and resulting ceramic were characterized. The results indicate that homogeneous and fine powder (about 100nm) with a pure K2NiF4 phase can be produced by calcining the complex precursor at 900℃ for 2h in air. The rietveld refinement using X-ray diffraction data reveals that La1. 9Sr0. 1Ni0. 9Cu0.1O4+δ composition has an orthorhombic structure with Frnmm space group. La1. 9Sr0. 1Ni0. 9Cu0.1O4+δ exhibits an improved sintering property compared with La1. 9Sr0. 1Ni0. 9Cu0.1O4+δ and an increased electrical conductivity compared with La2Ni0.9Cu0.1O4+δ.La1. 9Sr0. 1Ni0. 9Cu0.1O4+δ ceramic sintered at 1400℃ offers a relative density of 95.3%,attaining electrical conductivities of 78-99S/cm at 600-800℃ together with an oxygen ionic conductivity of 2.0×10^-2S/cm at 800℃.
出处 《功能材料》 EI CAS CSCD 北大核心 2008年第3期398-402,共5页 Journal of Functional Materials
基金 国家自然科学基金资助项目(50572079) 国家教育部新世纪优秀人才支技术计划资助项目(NECT-04-0724)
关键词 La1.9Sr0.1Ni0.9Cu0.1O4+δ 混合导体 氨基多羧酸配合物法 电导率 La1. 9Sr0. 1Ni0. 9Cu0.0O4+δ mixed conductor polyaminocarboxylate complex method conductivity
  • 相关文献

参考文献18

  • 1Skinner S J,Kilner J A. [J]. Solid State Ionics,2000,135:709- 712.
  • 2Kharton V V,Viskup A P,Kovalevsky A V, et al.[J].Solid State Ionics,2001,143:337-353.
  • 3Vashook V V,Toloehko S P,Yushkevieh I I,et al.[J]. Solid State Ionics, 1998,110:245-253.
  • 4Kharton V V, Viskup A P, Naumovich E N, et al.[J].J Mater Chem, 1999,9: 2623-2639.
  • 5Wang Y S,Nie H W,Wang S R,et al.[J].Materials Letters, 2005,60:1174-1178.
  • 6Daroukh M Al, Vashook V V, Ullmann H,et al.[J]. Solid State Ionics,2003,158 : 141-150.
  • 7Boehm E,Bassat J M, Steil M C, et al.[J].Solid State Sciences,2003,5:973-981.
  • 8Huang D P,Xu Q, Zhang F, et al. [C]. Proceedings of the 10th Asian Conference on Solid State lonics,2006. 213-219.
  • 9Tan R Q, Zhu Y F,Feng J,et al.[J].J Alloys Comp,2002, 337 : 282-288.
  • 10Huang D P,Xu Q,Zhang F,et al. [J]. Mater Lett,2006,60:1892-1895.

二级参考文献14

  • 1Teraoka Y, Zhang H M, Yamazoe N. Mater. Res. Bull., 1988, 23 (1): 51-58.
  • 2Huijmans J P P, Van Berkel F P F, Christie G M. J. Power Source, 1998, 7: 107-110.
  • 3Tsai C Y, Dixon A G, Ma Y H, et al. J. Am. Ceram. Soc., 1998, 81 (6): 1437-1444.
  • 4Chen C C, Nasrallah M M, Anderson H U. J. Electrochem. Soc., 1995, 142 (2): 491-496.
  • 5Stevenson J W, Armstrong T R, Carneim R D, et al. J. Electrochem. Soc., 1996, 143 (9): 2722-2729.
  • 6Elshof J E, Lanknorst M H R, Bouwmeester H J M. Solid State Ionics, 1997, 99: 15-22.
  • 7Tai L W, Nasrallah M M, Anderson H U, et al. Solid State Ionics, 1995, 76: 259-271.
  • 8Tai L W, Nasrallah M M, Anderson H U, et al. Solid State Ionics, 1995, 76: 273-289.
  • 9Shi L, Tin K C, Wong N B. J. Mater. Sci., 1999, 34: 3367-3374.
  • 10Jamnik J. Solid State Ionics, 2003, 157: 19-28.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部