摘要
多传感器数据融合的理论和方法已经被应用到许多领域。但目前对于多传感器所测的数据还没有一种通用的行之有效的处理方法。基于量子空间的粒子群(QDPSO)算法训练的BP神经网络具有较好的稳定性和收敛性,将其运用于多传感器的数据融合,在仿真中取得了比常规算法更高的精度,控制策略制定准确、可靠,是一种较有潜力的多传感器数据融合方法。
Theory and methods of multi-sensor data fusion are applied to a lot of research fields in recent years. But currently, there is not a very useful method that can handle data of multi-sensor system universally. BP network,which is based on QDPSO algorithm, has better stability and convergence. Applied to multi-sensor data fusion, in the emulation higher accuracy than conventional algorithms can be achieved and control-strategy obtained is precise, credible. It is a kind of potential data fusion method.
出处
《传感器与微系统》
CSCD
北大核心
2008年第3期21-23,共3页
Transducer and Microsystem Technologies
基金
国家"863"计划资助项目(10A3)
关键词
多传感器
数据融合
量子空间的粒子群算法
BP神经网络
multi-sensor
data fusion
quantum delta-potential-well-based particle swarm optimization (QDPSO) algorithm
BP neural networks