期刊文献+

固体火箭发动机药柱整形装备机电耦联动力学建模与计算 被引量:8

Dynamical Modeling and Computation on Electromechanical Coupling System of Grain Reshaping Machine Tool for Solid Propellant Rocket Motor
下载PDF
导出
摘要 机电耦联系统动力学系统是典型的多输入、多输出、非线性、强耦合、不确定性系统。机电耦联系统动力学的建模与计算对于深入研究机电一体化装备整机动力学性能,改善控制精度等方面具有重要意义。据此,针对固体火箭药柱整形装备主轴部件2自由度机电耦联系统,运用Park变换推导该系统基于伺服电动机dq0坐标系的拉格朗日-麦克斯韦方程,建立包括机构、伺服电动机和控制器的系统微分方程组。该机电耦联动力学建模方法不需测量电动机的磁路尺寸。只要测量电动机dq0坐标系绕组电感和永磁体磁链的幅值就可直接列出微分方程,推导简洁高效,便于应用。动力学微分方程求解采用稳定性较好、数值精度较高的Hamming方法实现方程组高效的求解。仿真结果证明动力学微分方程推导正确,求解高效。 Electromechanical coupling dynamical system is representative multi-input, multi-output, non-linear, tight coupling, and uncertain system. Dynamical modeling and calculation of eleetromechanical coupling system play an important role in the deep exploration of dynamical-performance and improvement of control accuracy for complete electromechanical equipment. Thus, Lagrange-Maxwell equations have been deduced based on 2-DOF electromechanical coupling system and spindle unit of grain refitted machine tool for solid propellant rocket motor by using Park transform in dq0 coordinate system of servomotor. In this dynamical modeling method of electromechanical coupling system, to establish dynamical differential equations, it is needed to measure amplitude of the flux induced by the permanent magnets and the winding's inductance in dq0 reference of the motor but not to measure the size of magnetic circuit. The equations deduction is terse, efficient, and the equations are easy to use. System differential equations have been established that include mechanism, servomotor and controller, which could be solved efficiently by Hamming method with high numerical accuracy and stability. The results of computer simulation prove the preciseness of formulation deduced and efficiency of differential equations solved.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2008年第3期110-116,共7页 Journal of Mechanical Engineering
基金 国家自然科学基金(50675095) 内蒙古自治区高等学校研究项目(NJ04007)资助。
关键词 固体火箭发动机机 电耦合系统 动力学 Solid propellant rocket motor Electromechanical coupling system Dynamics
  • 相关文献

参考文献10

  • 1王艾伦,钟掘.复杂机电系统的全局耦合建模方法及仿真研究[J].机械工程学报,2003,39(4):1-5. 被引量:25
  • 2邱家俊.机电耦联动力学的研究进展[J].力学进展,1998,28(4):453-460. 被引量:13
  • 3MARCUS S, JOHN M. Dynamic modeling of electromechanical multibody systems[J]. Multibody System Dynamics, 2003, 9(1): 87-115.
  • 4GUY B, PHILIPPE S, STEPHANE C. Optimal motion synthesis-dynamic modelling and numerical solving aspects[J]. Multibody System Dynamics, 2002, 8(3): 257-278.
  • 5鞠立华,蒋书运.飞轮储能系统机电耦合非线性动力学分析[J].中国科学(E辑),2006,36(1):68-83. 被引量:9
  • 6李辉,张策,宋轶民,孟彩芳.可控压力机的动力学建模和仿真[J].机械工程学报,2005,41(3):180-184. 被引量:10
  • 7YOJI Takeda, TAKAO Hirasa. Current phase control methods for permanent magnet synchronous motors considering Saliency[C]//Aachen Germany: PESC”88, 1998: 409-414.
  • 8FITZGERALD A E, CHARLES KINGSLEY Jr. UMANS S D. Electric machinery[M]. Beijing: Tsinghua University Press, 2003.
  • 9HIDEO Nakai, HIROKI Ohtani, YUKIO Inaguma. Novel torque control technique for high efficiency/high power interior permanent magnet synchronous motors[J]. R&D Review of Toyota CRDL, 2005, 40(2): 44-49.
  • 10YANG W Y, CAO Wenwu, CHUNG T S, et al. Applied numerical methods using MATLAB[M]. A John Wiley &Sonic, Inc., Publication, 2004.

二级参考文献75

  • 1邱家俊.低速异步电动机由非线性电磁力激发的参数共振[J].应用科学学报,1993,11(2):171-179. 被引量:2
  • 2邱家俊.高维机电耦联系统的非线性振动[J].振动工程学报,1994,7(2):133-143. 被引量:6
  • 3黄培文,刘蕴予.1700带钢冷连轧机主传动系统扭振研究[J].重型机械,1995(6):9-15. 被引量:4
  • 4廖道训,熊有伦,杨叔子.现代机电系统(设备)耦合动力学的研究现状和展望[J].中国机械工程,1996,7(2):44-46. 被引量:9
  • 5王艾伦 钟掘.功率拓扑键合图及其在复杂非线性系统中的应用[A]..中国科协首届学术年会论文集[C].北京:中国科学技术出版社,1999..
  • 6Mulcahy T M, Hull J R, Uherke K L, et al. Flywheel energy storage advanced using HTS bearings. IEEE Transactions on Applied superconductivity, 1999, 9(2): 297-300.
  • 7Bornemann H J, Sander M. Conceptual system design of a 5MW/10MW superconducting flywheel energy storage planet for power utility applications. IEEE Transactions on Applied Superconductivity, 1997, 7(2):378-401.
  • 8Miyagawa Y, Kameo H. A 0.5 kW flywheel energy storage system using a high-Tc superconducting magnetic beating. IEEE Transactions on Applied Superconductivity, 1999, 9(2): 996-999.
  • 9Coombs T A, Campbell A M. Superconducting bearings in flywheels. Materials Science & Engineering,1998, B53:225-258.
  • 10Sung T H, Han S C, Han Y H, et al. Designs and analyses of flywheel energy storage systems using high Tc superconductor-bearings. Elsevier Science Cryogenics, 2002, 42:357-362.

共引文献52

同被引文献53

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部