期刊文献+

等p路径下砂土本构关系的归一化特性及数值建模方法 被引量:7

NORMALIZATION CHARACTERISTIC OF SAND UNDER THE STRESS PATH OF CONSTANT p AND THE CORRESPONDING NUMERICAL MODELING METHOD
下载PDF
导出
摘要 用神经网络对土体进行建模能反映应力路径相关性、反映土的剪胀剪缩以及反映体应力、剪应力对体应变、剪应变的交互影响,因而成为一种比较理想的建模方式.能否在样本有限的情况下获得精度比较高的本构模型正是主要的研究目的.通过研究中密砂在等p路径下的三轴试验曲线,发现其应力-应变关系曲线在常规应力范围内具有归一化特性.选择合适的归一化指标对砂土三轴试验数据进行归一化,以归一化的试验数据为训练样本进行神经网络训练,得到了比较理想的砂土的神经网络本构模型.本构模型仿真值与试验值符合较好,表明所给出的建模方法是合理的.提出的建模方法可以在所有试验数据的基础上自动实现概率寻优,能有效降低噪声信号的干扰、减小试验数据的分散造成的影响. Neural network is an effective way of modeling constitutive relations of soils because it can effectively reflect the influence of stress path, shear dilation as well as interaction between shear strain or volume stress and shear stress or volume stress. The main objective of this paper is to find a way of modeling constitutive relations of soils with high-precision by using the approach of neural network when the training samples are not enough. Study shows that there is normalization characteristic about the stress-strain curves of middle-dense sands in the range of routine stress under the stress path of constant p. The triaxial test data are normalized by choosing proper normalization parameters. The neural networks are trained by regarding the normalized data as samples and then the constitutive model of sand described by neural networks is obtained. The simulation value of the neural networks accord with the test value well, which shows that the modeling method proposed in this paper is reasonable. It can achieve probabilistic optimization automatically based on all test data by using the modeling method, and can reduce the interference of noise signal, lower the influence caused by dispersive test data.
出处 《固体力学学报》 CAS CSCD 北大核心 2008年第1期85-90,共6页 Chinese Journal of Solid Mechanics
关键词 等p路径 砂土本构关系 归一化特征 神经网络 数值建模方法 stress path of constant p, constitutive relations of sand, normalization characteristic, neural networks, numerical modeling method
  • 相关文献

参考文献8

  • 1Tarantola A. Inverse Problem Theory[M]. Amsterdam : Elsevier Science Publishers, 1988.
  • 2Wang J T, Ding M Y. Inverse Problems in Modeling the Constitutive Relations of Rock and Soil[C]. Proceeding of the Tenth International Conference on Computer Methods and Advances in eomechanics, Tucson/Arizona/USA, Janpan, 2001, 413-416.
  • 3曾静,冯夏庭,王靖涛,盛谦.不同应力路径下砂土的神经网络弹塑性本构模型研究[J].岩土力学,2004,25(6):896-900. 被引量:10
  • 4Ellis G W,Yao C,Zhao R,et al. Stress-strain Modeling of Sands Using Artificial Neural Networks[J]. Journal of Geotechnical Engineering, 1995, 121(5): 429-435.
  • 5Penumadu D, Zhao R. Triaxial compression behavior of sand and gravel using artificial neural networks (ANN)[J]. Computers and Geotechnics, 1999, 24: 207-230.
  • 6Ghaboussi J, Jr Garrett J H, Wu X. Knowledgebased modeling of material behavior with neural networks[J]. Journal of Engineering Mechanics, ASCE, 1991, 117(1): 132-153.
  • 7曾锦光,舒雅琴.材料非线性粘弹性本构关系的神经网络模拟[J].固体力学学报,2004,25(1):71-74. 被引量:2
  • 8Hech-Nielsen R. Euro Computing[M]. New York: Addison Wesley Publishing Company, 1990.

二级参考文献9

  • 1冯夏庭,冯夏庭,贾民泰.岩石力学问题的神经网络建模[J].岩石力学与工程学报,2000,19(z1):1030-1033. 被引量:7
  • 2孙岳崧 濮家骝 等.不同应力路径对砂土应力-应变关系影响[J].岩土工程学报,1987,9(6):78-88.
  • 3Chen Tianping et al.Universal approximation to nonlinear operators by NN with arbitrary activation functions and its application to dynamical systems.IEEE Trans NN,1995,6:911-917
  • 4Wray et al.Calculation of the Volterra kernel of non-linear dynamic systems using an artifical neural network.Biol Cybern,1994,71:187-195
  • 5Marmarelis V Z et al.Volterra models and the three-layer perceptron.IEEE Trans NN,1997,8:1421-1433
  • 6Lockett F J.Nonlinear Viscoelastic Solids.London:Academic Press,1972
  • 7Green A E,Rivlin R S.The mechanics of nonlinear materials with memory,Part I Arch Rat Mech Anal,1957,1:1-21
  • 8Ghaboussi J, Sidarta D E. New nested adaptive neural networks (NANN) for constitutive modeling[J]. Computer and Geotechnics, 1998, 22 (1): 29-52.
  • 9Ellis G W, Yao C, Zhao R, et al. Stress-Strain modeling of sands using artificial neural networks[J]. Journal of Geotechnical Engineering, 1995, 121(5): 429-435.

共引文献10

同被引文献86

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部