期刊文献+

基于交换策略的蚁群算法求解多维0-1背包问题 被引量:6

Ant Colony Algorithm for Solving Multi-dimensional 0-1 Knapsack Problem Based on Exchange Strategy
下载PDF
导出
摘要 在项目决策与规划、资源分配、货物装载等工作中,提出了多维0-1背包问题,对这一问题,国内外学者提出了许多算法。本文推广了文献[7]中求解单维0-1背包问题的蚁群算法,并从结合2-opt等局部优化的蚁群算法求解旅行商问题中得到启示:通过交换策略可以加快算法的收敛速度和获取更高质量的解,因此提出了基于交换策略的蚁群算法。再把这种算法与AIAACA算法[8]进行比较,实验结果显示该算法与AIAACA算法效果相当,用时更少,是求解多维0-1背包问题的有效算法。 Multi-dimensional 0-1 knapsack problem often appears in decision making and programming, resource distribution, loading, and so on. For solving this problem, many algorithms have been proposed by scholars. This paper extends the ant colony algorithm which is used for solving 0-1 knapsack problem in reference [7], and gets enlightenment from the ant colony algorithm with 2-opt local optimization for solving traveling salesman problems:Exchange strategy can make the algorithm have faster convergence rate and get better quality solution, So this paper presents the ant colony algorithm based on exchange stragegy. Compared with AIAACA algorithm, experiment results demonstrate that the algorithm proposed in this paper has the same result but the runtime is shorter. So this algoritm is rather efficient for solving multi-dimensional 0-1 knapsack problem.
出处 《计算机与现代化》 2008年第3期83-85,共3页 Computer and Modernization
关键词 多维0—1背包问题 蚁群算法 交换 multi-dimensional 0-1 knapsack problem ant colony algorithm exchange
  • 相关文献

参考文献8

  • 1Syslo M M, et al. Discrete Optimization Algorithms[M]. Englewood Cllfs, New Jersey: Prentice-Hall, 1983: 118-165.
  • 2Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies[C]//Proceedings of the 1st European Conferenee on Artificial Life, 1991 : 134-142.
  • 3Dorigo M, Maniezzo V, Colomi A. Ant system : optimization by a colony of cooperating agents [ J ]. IEEE Transaction On Systems, Man, and Cybernetics-Part B, 1996, 26 (1) : 29-41.
  • 4H M Weingartner, D N Ness. Methods for the solution of the multi-dimensional 0/1 knapsack problem [ J ]. Operations Research, 1967, 15 : 83-103.
  • 5W Shi. A branch and bound method for the multiconstraint zero one knapsack problem [ J ]. Opl. Res. Soc. 1979, 30 : 369-378.
  • 6Joerg Heitkoetter. A Collection of 48 0/1 Multiple Knapsack Problems [ EB/OL ]. http ://people. brunel.ac.uk/~mastjjb/jeb/orlib/files/mknap2.txt, 2004439-07.
  • 7胡小兵,黄席樾.基于蚁群优化算法的0-1背包问题求解[J].系统工程学报,2005,20(5):520-523. 被引量:24
  • 8杜海峰,刘若辰,焦李成,王孙安.求解0-1背包问题的人工免疫抗体修正克隆算法[J].控制理论与应用,2005,22(3):348-352. 被引量:16

二级参考文献15

  • 1米凯利维茨Z.演化程序-遗传算法和数据编码的结合[M].北京:科学技术出版社,2000..
  • 2玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004..
  • 3Dorigo M, Maniezzo V, Colorni A. The ant system: Optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems Man and Cybernetics, Part B, 1996, 26(1): 29-41.
  • 4Dorigo M, Di C G, Gambardella L M. Ant algorithms for discrete optimization[J]. Artificial Life, 1999, 5(2): 137-172.
  • 5Dorigo M, GambardeUa L M. Ant colony system: A cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computations, 1997, 1(1): 53-66.
  • 6MARTELLO S. PISINGER D, TOTH P. New trends in exact algorithms for the 0-1 knapsack problem.J .European Journal of Operational Research.2000.123(2):325 - 332.
  • 7周光炎.免疫学原理[M].上海:上海科学技术文献出版社,2001.16-19.
  • 8GEORG S. Mp-testdata[ EB/OL]. Berlin: Zuse Institute Berlin,2003[2004]. http://elib. zib. de/pub/Packages/mp-testdata/ip/sac94-suite/index. html.
  • 9DASGUPTA D, FORREST S. Artificial immtme systems in industrial applications [C]//MEECH J A,VEIGA M M, SMITH M H, et al.Proc of the Second Int Conf on Intelligent Processing and Manufacturing of Materials ( IPMM' 99 ). Honolulu:IEEE Press, 1999:257 -267.
  • 10GASPER A, COLLARD P. From GAs to artificial immune systems:improving adaptation in time dependent optimization [C]//Zbyszek Michalewicz. Proc of the Congress on Evolutionary Computation(CEC '99). Piscataway: IEEE Press, 1999:1859 - 1866.

共引文献36

同被引文献58

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部