期刊文献+

一种改进的动态自适应最大-最小蚁群算法 被引量:6

An Improved MMAS with Dynamic Adaptive Property
下载PDF
导出
摘要 最大—最小蚂蚁系统(MMAS)具有较强的全局最优解搜索能力,能够有效避免早熟收敛,但收敛速度较慢。针对MMAS的不足,改进其信息素更新方式,提出一种新的动态自适应调整信息素的策略。对TSP问题的仿真实验结果表明,改进后的算法加快了收敛速度,提高了全局搜索能力。 Max-min ant system (MMAS) has great ability of searching the whole best solution and availability of avoiding premature convergence, but at the same time there is defect of slow speed of convergence. In order to overcome the shortcoming of basic MMAS, it is improved in a way of updating pheromone and a new dynamic adaptive strategy of adjusting pheromone is adopted in this algorithm. Experimental results for solving TSP problems indicate that the improved algorithm increases the speed of convergence and enhances the ability of searching the whole best solution.
作者 唐增明 蒋泰
出处 《计算机与现代化》 2008年第3期90-92,共3页 Computer and Modernization
基金 广西科技攻关资助项目(0428006-9)
关键词 蚁群算法 最大最小蚂蚁系统 动态自适应 ant colony algorithm max-rain ant system(MMAS) dynamic adaptive
  • 相关文献

参考文献7

  • 1Dorigo M, Maniezzo V, Colorni A. The ant system: Optimization by a colony of cooperating agents[J].IEEE Transaction on Systerm Man and Cybematic, 1996,26(1) :29-41.
  • 2Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to the traveling salesman problem[J]. Transactions on Evolutionary Computation, 1997,1 (1) :53-66.
  • 3L M Cambardella,M Dorigo. Ant-Q:a reinforcement learning approach to the traveling saleswan problem[C]//Proceedings of the 12th International Conference on Machine Learning. ML'95 Morgan Kaufman Palo Alto CA, 1995: 252-260.
  • 4Stutzle T, Hoos H H. Max-Min ant systems[J]. Future Generation Compuler Systems, :2000,16(19):889-914.
  • 5Deneubourg J M, Pasteels J M, Verhaeghe J C. Probabilistic behavior in ants: A strategy of errors [ J ]. Journal of Theoretical Biology, 1983,105:259-271.
  • 6田富鹏.改进型蚁群算法及其在TSP中的应用[J].兰州大学学报(自然科学版),2005,41(2):78-80. 被引量:6
  • 7Dorigo M,Gambardella L M. Ant colonies for the traveling saleman problem[J]. Biosystem, 1997,43(2):73-81.

二级参考文献5

  • 1Dorigo M, Maniezzo V, Colorni A. The ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems, 1996, 26(1): 29-41.
  • 2Bentley J L. Fast algorithms for geometric traveling salesman problem[J]. ORSA Journalon Computing,1992, 4: 387-411.
  • 3Back T, Schwefel H P. An overview of evolutionary algorithms for parameter optimization[J]. Evolutionary Computation, 1993, 1(1): 1-23.
  • 4Dorigo M, Gambardella L M. Ant colony system: a cooperative learning approach to the traveling salesman problem[J].
  • 5段海滨,王道波.一种快速全局优化的改进蚁群算法及仿真[J].信息与控制,2004,33(2):241-244. 被引量:57

共引文献5

同被引文献51

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部