期刊文献+

偏最小二乘回归模型的泛化能力改进研究 被引量:2

On Improvement of Generalization Ability of Partial Least-Squares Regression Model
下载PDF
导出
摘要 为了提高模型的泛化能力,提出了嵌入缩放思想的偏最小二乘回归(Partial Least-Squares Regression,PLS)建模方法。该方法通过对输入向量的缩放处理,将训练样本模糊化,缩小测试误差,从而提高了PLS的泛化能力。对原有的缩放法进行了改进,提出r算法。该算法可以找到合适的缩放因子,得到泛化能力更强的模型。仿真实验证明了所提方法的有效性。 An approach to improve the generalization ability of partial least squares regression (PLS)with shrink-magnifying thought is presented, which is implemented by shrinking or magnifying the input vector, reducing test error, improving the generalization ability of PLS. And r-algorithm is prsented based on shrinking-magnifying approach in order to find out the appropriate shrinking factor r and obtain better generalization ability of PLS. The simulation result shows the effectiveness of the proposed method.
作者 丁涛 杨慧中
出处 《控制工程》 CSCD 2008年第2期150-153,共4页 Control Engineering of China
基金 江苏省高技术研究(工业部分)基金资助项目(BG2006010)
关键词 偏最小二乘 模糊理论 泛化能力 PLS fuzzy theory generalization ability
  • 相关文献

参考文献9

二级参考文献46

  • 1武妍,王守觉.一种通过反馈提高神经网络学习性能的新算法[J].计算机研究与发展,2004,41(9):1488-1492. 被引量:15
  • 2徐哲,刘荣.偏最小二乘回归法在武器装备研制费用估算中的应用[J].数学的实践与认识,2005,35(3):152-158. 被引量:24
  • 3Martin T Hagan,Howard B Demuth,Mark Beale.Neural Network Design[M].Bejing:China Machine Press,CITIC PUBLISHING HOUSE, 2002-08.
  • 4W S Sarle.Stopped training and other remedies for overfitting[C].In: Proceedings of the 27th Symposium on the Interface,1995.
  • 5A S Weigand,D E Rumelhart,B A Huberman.Generalization by weight elimination with application to forecasting[C].In:R P Lippman, J E Moody ,D J Touretzky eds.Advances in Neural Information Processing Systems 3,San Mateo,CA: Morgan Kaufmann, 1991:575-582.
  • 6H Ishibuchi ,M Nii.Fuzzification of input vector for improving the generalization ability of neural networks[C].In :The Int'l Joint Conf on Neural Networks ,Anchorage ,Alaska, 1998.
  • 7D Opitz,R Maclin.Popular Ensemble Methods:an Empirical Study[J]. Journal of Artificial Intelligence Research, 1999; 11 : 169-198.
  • 8J S R Jang,C T Sun,E Mizutani.Neuro-Fuzzy and Soft Computing[M]. Upper Saddle River,NJ:Prentice-Hall Inc,Simon & Schuster/A Viacom Company, 1997.
  • 9D F Specht.Probabilistic neural networks[J].Neural Networks, 1990;3(1): 109-118.
  • 10周复恭,应用线性回归,1989年

共引文献28

同被引文献56

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部