期刊文献+

非线性系统的模糊免疫PSD控制与仿真 被引量:9

Fuzzy Immune PSD Control of Non-linear Systems
下载PDF
导出
摘要 针对模糊免疫PID控制算法中微分与积分增益不能根据系统特性自动调整的问题,提出了一种模糊免疫PSD(Proportional Summation Derivative)控制算法。该方法将自适应PSD算法与模糊免疫PID算法相结合,利用自适应PSD控制算法根据过程误差的几何特性建立的PSD控制规律,使得模糊免疫PID控制算法中的微分和积分增益可以随比例增益的变化而自适应调整,从而进一步提高控制算法的自适应性能。仿真实验表明,采用该算法可以提高非线性、时变系统的控制性能,并能减少参数调整的工作量。 To the problem that the integral and differential gain of fuzzy immune PID control algorithm cannot be tuned automatically according to the system characteristic, a fuzzy immune proportional summation derivative (PSD) control algorithm is proposed. Combining the adaptive PSD control and the fuzzy immune PID control, using the PSD control law which is established based on the geometrical character of the process error, the integral and differential gain of fuzzy immune PID control algorithm can be tuned along with the change of the proportional gain of the fuzzy immune PID control algorithm so as to enhance the adaptive performance of the control algorithm. Simulation results show that control performance of non-linear, time-varying system is improved, and the workload of parameter tuning is reduced.
作者 李洪斌 陈潞
出处 《控制工程》 CSCD 2008年第2期168-170,共3页 Control Engineering of China
基金 国家自然科学基金资助项目(50575129)
关键词 模糊控制 免疫控制 自适应PSD控制 fuzzy control immune control adaptive PSD control
  • 相关文献

参考文献5

  • 1陶永华.新型PID控制及其应用(第2版)[M].北京:机械工业出版社,2003.
  • 2付冬梅,郑德玲,位耀光,周颖,鞠磊.人工免疫控制器的设计及其控制效果的仿真[J].北京科技大学学报,2004,26(4):442-445. 被引量:25
  • 3Kawafuku M, Sasaki M, Takahashi K. An immune feedback mechanism based adaptive learning of neural network controller[ A]. The 6th International Conference on Neural Information Processing[ C]. Piscataway NJ, USA: IEEE, 1999.
  • 4Qi z Q,Hu G D,Yang Z H, et al.A novel control algorithm based on immune feedback principle[ C]. Beijing: IEEE, First International Conference on Machine Learning and Cybernetics,2002.
  • 5范伟,彭光正,李英.神经元自适应PSD控制在气动人工肌肉力控制中的应用[J].机床与液压,2004,32(10):53-54. 被引量:3

二级参考文献12

  • 1[1]Lydyard P M, Whelan A, Panger M W. Instant notes in immunology[M].北京:科学出版社,2001
  • 2[4]Kawafuku M, Sasaki M, Takahashik. Adaptive learning method of neural network controller using an immune feedback law [A]. 1999 IEEE/ASME International Conference on Advanced Intelligent Mechanizations [C]. Piscataway: IEEE, 1999. 641
  • 3[5]Ishida Y, Adachi N. Active noise control by an immune algorithm: adaptation immune system as an evolution [A].Proc 1996 IEEE Int Conf on Evolutionary Computation[C]. Nagoya, 1996. 150
  • 4[8]Wang Q G, Lee T H, Fung H W, et al. PID tuning for improved performance [J]. IEEE Trans Control Syst Technol, 1999, 7(4): 457
  • 5Tondu B. , Lopez P.. Modeling and control of Mckibben artificial muscle robot actuators. IEEE Control Systems Magazine, 2000, 4 (4): 15~28.
  • 6J. Marsik. A New Conception of Digital Adaptive PSD Control. Problems of Control and Information Theory,1983, 12 (4): 267~279.
  • 7J. Marsik, V. Strejc. Application of Identification on free algorithms for adaptive control. Automatica, 1989,25 (2): 273 ~ 277.
  • 8王顺晃,舒迪前.智能控制系统及其应用.北京:机械工业出版社,1994.
  • 9谈英姿,沈炯,吕震中.免疫PID控制器在汽温控制系统中的应用研究[J].中国电机工程学报,2002,22(10):148-152. 被引量:104
  • 10肖人彬,王磊.人工免疫系统:原理、模型、分析及展望[J].计算机学报,2002,25(12):1281-1293. 被引量:209

共引文献32

同被引文献54

引证文献9

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部