摘要
设λKv为完全多重图,G为有限简单图,图设计G-GDλ(v)是一个序偶(X,B),其中,X是Kv的顶点集,区组集B为λKv的一种分拆,B是与G同构的子图,利用"差方法"、"带洞图设计"等工具,结合小阶数的设计,对两类八点八边图的图设计进行讨论,并确定了对任意λ的存在谱。
Let λKv be a complete multiple graph with v vertices ,and G be a finite simple graph. Graph design G-GDλ (v) is a pair of (X;β) ,in which X is the vertex set of Kv and βis a partition of all the edges in λKv, and each member of β is isomorphic to G. By means of "diference method" and "holey graph design", graph design for a graph G with eight vertices and eight edges is discussed, and the existence spectrum for the G-GDλ(v) of λKv is determined.
出处
《苏州科技学院学报(自然科学版)》
CAS
2008年第1期12-15,共4页
Journal of Suzhou University of Science and Technology (Natural Science Edition)
基金
河南大学科研基金资助项目(06YBZR050)
关键词
图设计
带洞图设计
不完全图设计
graph design
holey graph design
incomplete graph design