期刊文献+

一种基于布尔向量的Apriori改进算法 被引量:5

Research of Algorithm for Mining Association Rules Based on Boolean Vectors
下载PDF
导出
摘要 从分析布尔向量与项集支持度的相关性质入手,利用计算机的逻辑"与"运算的高效率性以及通过布尔向量计算项集支持度的简单性,提出了基于布尔向量的关联规则挖掘算法。该算法只需一次扫描数据库,无需候选项集和"剪枝"操作,极大地提高了算法的效率。 Abstract: The algorithm of mining association rules based on Boolean vectors is proposed by analyzing relation theory of Boolean vectors and counting support of each item sets. It makes use of good efficiency of "AND" operation on Boolean vectors and the simplicity of counting support of each item sets. The improved algorithm overcomes the shortcoming of the traditional Apriori algorithm and can greatly enhance operational efficiency by only scanning database once, with no necessity of candidate item sets and pruning operation.
出处 《苏州科技学院学报(自然科学版)》 CAS 2008年第1期67-70,共4页 Journal of Suzhou University of Science and Technology (Natural Science Edition)
基金 江苏省高校哲学社会科学研究基金资助项目(06SJD870001)
关键词 数据挖掘 关联规则 APRIORI算法 布尔向量 data mining association rules Apriori algorithm Boolean vectors
  • 相关文献

参考文献8

  • 1蔡伟杰,张晓辉,朱建秋,朱扬勇.关联规则挖掘综述[J].计算机工程,2001,27(5):31-33. 被引量:134
  • 2Agrawal R, Imielinski T,Swami A, Mining association rules between sets of items in large databases[C]// In :Proc 1993 ACM-SIGMO D Int Conf Management of Data(SIGMOD'93). Washington:DC,1993.
  • 3Agrawal R,Srikant R. Fast Algorithms for Mining Association Rules [C]//In: Proceedings of the VLDB Conference. Santiago: Chile, 1994:487-499.
  • 4Park J S,Chen M S,Yu P S. An effective hash-based algorithm for mining association rules[C]//In:Proc 1995 ACM-SIGMOD Int Conf Management of Data. San Jose: CA, 1995:175-186.
  • 5Zaki M J . Parallel and distributed association mining:A survey[J]. IEEE Concurrency, Special Issue on Parallel Mecb-anisms for Data Mining, 1999,7(4) : 14-25.
  • 6Han J,Jian P,Yiwen Y, Mining frequent patterns without candidate generation [C]//In: Proceedings of the 2000 ACM SIGMOD International Conference Management of Data, Dallas :Texas ,2000 : 1-12.
  • 7宋余庆,朱玉全,孙志挥,陈耿.基于FP-Tree的最大频繁项目集挖掘及更新算法[J].软件学报,2003,14(9):1586-1592. 被引量:164
  • 8李超,余昭平.基于矩阵的Apriori算法改进[J].计算机工程,2006,32(23):68-69. 被引量:43

二级参考文献6

  • 1Han J,Proc 2000 ACMSIGMOD Int Conf Management of Data(SIGMOD 2000),2000年
  • 2Han Jiawei,Issuer for On-line Analytical Mining of Data Warehouses
  • 3Agrawal R,Imielinski T,Wami A S.Mining Association Rules Between Sets of Items in Large Databases[C].Proc.of the ACM SIGMOD Conference on Management of Data,Washington,1993-05:207-216.
  • 4范明译.数据挖掘:概念与技术[M].北京:机械工业出版社,2003.
  • 5Kleinberg J,Papadimitriou C,Raghavan P.Segmentation Problems[C].Proceedings of the 30^th Annual Symposium on Theory of Computing,1998.
  • 6路松峰,卢正鼎.快速开采最大频繁项目集[J].软件学报,2001,12(2):293-297. 被引量:113

共引文献338

同被引文献34

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部