期刊文献+

焊接裂纹金属磁记忆信号的神经网络识别 被引量:14

Metal magnetic memory signal recognition by neural network for welding crack
下载PDF
导出
摘要 金属磁记忆检测技术是一种新型的利用铁磁材料内在信息对材料进行检测和评价的无损检测方法,对裂纹类缺陷进行早期检测具有潜在的优势。利用小波包分析技术,对水压试验条件下API5L X70管线钢焊缝中有无焊接裂纹的金属磁记忆信号能量特征进行了分析,确定了焊接裂纹金属磁记忆信号的小波包能量特征,并利用其作为输入特征向量建立了BP(back propagation)神经网络,对焊缝中是否含有裂纹等缺陷进行智能识别。结果表明,利用小波包能量和神经网络技术可以较好的实现焊接裂纹的识别。 Metal magnetic memory (MMM) is one of non-destructive testing method which inspection or evaluation ferromagnetic material used the inner magnetic information. It has been considered as a potential predominance for early diagnosis of crack. The wavelet analysis is employed to extract the MMM signal energy feature with or without welding crack for API 5L X70 pipeline steel at the condition of hydraulic pressure, and then the back propagation (BP) neural network is used to distinguish the weld with crack from free crack that energy feature is used as input eigenvector. The result shows that used the wavelet analysis and BP neural network can recognize the welding crack preferable.
出处 《焊接学报》 EI CAS CSCD 北大核心 2008年第3期13-16,共4页 Transactions of The China Welding Institution
基金 国家自然科学基金资助项目(50475113) 博士后科学基金(200700420115)
关键词 焊接裂纹 金属磁记忆 特征提取 神经网络 welding crack metal magnetic memory feature extraction neural network
  • 相关文献

参考文献8

  • 1Jiles D C. Theory of magnetomechanical effect[J]. Journal of Physics D: Applied Physics, 1995, 28(8) : 1537 - 1546.
  • 2Jiles D C, Li L. A new approach to modeling the magnetomechanical effect[J]. Journal of Applied Physics, 2004, 95( 11 ) : 7058 - 7060.
  • 3Liu T, Kikuchi H, Ara K, et al. Magnetomechanical effect of low carbon steel studied by two kinds of magnetic minor hysteresis loops [J]. NDT & E International, 2(106, 39(5): 408- 413.
  • 4Wushen LI, Xinjie DI, Shiwu BAI, et al. Feature analysis of metal magnetic memory signals for weld cracking-based on wavelet energy spectrum [ J ]. INSIGHT: Non-Destructive Testing and Condition Monitoring, 2006, 48(7): 426- 429.
  • 5邸新杰,李午申,白世武,刘方明,薛振奎.焊接裂纹的金属磁记忆定量化评价研究[J].材料工程,2006,34(7):56-60. 被引量:20
  • 6邸新杰,李午申,严春妍,白世武,刘方明,薛振奎.焊接裂纹金属磁记忆信号的特征提取与应用[J].焊接学报,2006,27(2):19-22. 被引量:24
  • 7张军,王彪,计秉玉.基于小波变换的套管金属磁记忆检测信号处理[J].石油学报,2006,27(2):137-140. 被引量:21
  • 8Christen R, Bergamini A. Automatic flaw detection in NDT signals using a panel of neural networks[J]. NDT & E International, 2006, 39(7) : 547 - 553.

二级参考文献17

  • 1马振国.用磁记忆检测技术预测井下套管故障[J].石油矿场机械,2004,33(6):99-101. 被引量:10
  • 2李军,陈勉,张辉.定向井套管应力随地应力条件的变化规律研究[J].石油学报,2005,26(1):109-112. 被引量:10
  • 3秦前清 杨宗凯.实用小波分析[M].西安:西安电子科技大学出版社,1995,第二章.32.
  • 4Wang W J , Mcfadden P D. Application of orthogonal wavelets to early gear damage detection [ J ]. Mechanics] System and Signal Processing, 1995, 9(5): 497-507.
  • 5Jing Lin, Liangsheng Qu. Feature extraction based on morlet wavelet and its application for mechanical fault diagnosis [ J ].Journal of Sound and Vibration, 2000, 234 (1) : 135 - 148.
  • 6Doubov A A.Screening of weld quality using the metal magnetic memory[J].Welding in the world,1998,41 (6):196-199.
  • 7杜波夫.金属磁记忆方法和已知磁无损检测方法的原则性区别[G]//2004年全国电磁(涡流)检测技术研讨会论文集.北京:无损检测学会,2004:182-185.
  • 8DUBOV A A.Principal features of metal magnetic memory method and inspection tools as compared to known magnetic NDT methods[EB/OL].http://www.ndt.net/article/wcndt2004/pdf/magnetic_techniques/359_dubov.pdf.
  • 9JILES D C.Theory of the magneto-mechanical effect[J].Journal of Applied Physics,1995,28:1537-1546.
  • 10DORIAN M,JINYI L,TETSUO S.Study of crack inversions utilizing dipole model of a crack and hall element measurements[J].Journal of Magnetism and Magnetic Materials,2000,217:207-215.

共引文献52

同被引文献138

引证文献14

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部