期刊文献+

基于散列的关联规则AprioriTid改进算法 被引量:8

Improvement of AprioriTid Algorithm for Association Rules Based on Hash Technology
下载PDF
导出
摘要 发现频繁项集是关联规则挖掘应用的关键,针对采用Apriori类的候选项目集生成-检验方法导致候选项目集产生的代价很高问题,该文提出一种基于散列的快速Apriori Tid改进算法,在Apriori Tid算法的基础上采用基于候选项Lk地址的哈希映射方法,提高了算法的执行效率。 Finding frequent itemset is a pivotal technology and stage in association rules mining application. Most studies adopt Apfiori-like candidate set generation-and-test approach, but candidate set generation is still costly. This paper proposes an improved ApriodTid algorithm to improve the algorithmic executive efficiency, which is based on candidate set Lk address-mapping approach of Hash technology.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第5期60-62,共3页 Computer Engineering
基金 浙江省湖州市级科技计划基金资助项目“基于统计学的社会性网络行为研究”(2006YZ15)
关键词 关联规则 频繁项目集 APRIORITID算法 散列 association rules frequent item set AprioriTid Hash
  • 相关文献

参考文献6

  • 1Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules in Large Database[R]. IBM Almaden Research Center, Technical Report: FJ9839, 1994.
  • 2Han J, Kamber M. Data Mining: Concepts and Techniques[M], Beijing: High Education Press, 2001.
  • 3Agrawal R, Imielinski T, Swami A. Mining Association Rules Between Sets of Items in Large Databases[C]//Proceedings of the ACM SIGMOD Conference on Management of Data. [S.l.]: ACM Press, 1993.
  • 4Fan Ming, Meng Xiaofeng. Data Mining: Concepts and Techniques[M]. Beijing: Mechanical Industrial Press, 2001.
  • 5Agrawal R, Srikant R. Fast Algorithm for Mining Association Rules[C]//Proceedings of the 20th International Conference on VLDB. Santiago: [s. n.], 1994.
  • 6马力军.关联规则算法性能分析与仿真研究[D].西安:西安交通大学,2000.

同被引文献62

引证文献8

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部