摘要
发现频繁项集是关联规则挖掘应用的关键,针对采用Apriori类的候选项目集生成-检验方法导致候选项目集产生的代价很高问题,该文提出一种基于散列的快速Apriori Tid改进算法,在Apriori Tid算法的基础上采用基于候选项Lk地址的哈希映射方法,提高了算法的执行效率。
Finding frequent itemset is a pivotal technology and stage in association rules mining application. Most studies adopt Apfiori-like candidate set generation-and-test approach, but candidate set generation is still costly. This paper proposes an improved ApriodTid algorithm to improve the algorithmic executive efficiency, which is based on candidate set Lk address-mapping approach of Hash technology.
出处
《计算机工程》
CAS
CSCD
北大核心
2008年第5期60-62,共3页
Computer Engineering
基金
浙江省湖州市级科技计划基金资助项目“基于统计学的社会性网络行为研究”(2006YZ15)