期刊文献+

基于改进NB分类方法的网络异常检测模型 被引量:2

Network Anomaly Detection Model Based on Improved Nave Bayesian Classifier
下载PDF
导出
摘要 随着计算机网络和分布式应用的复杂化和多样化,智能化网络异常检测技术逐渐成为有效监测和控制系统的重要方法。该文提出基于改进NB分类方法的网络异常检测算法,采用互信息的方法对网络属性进行关键特征提取。实验结果表明,该异常检测方法对DoS和Probing类攻击的检测率较高,具有较低的虚警率。 Due to the diversity and quickly growth of modem network and distributed systems, intelligent anomaly detection can play an important role in monitoring and controlling network systems. This paper presents a network anomaly detection model based on enhanced Nal've Bayesian classifier. Mutual information in information theory is used as basis of the algorithm of feature selection. Experimental results show that the network anomaly detection model performs better in detection of DoS and probing attack, and has lower false positive.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第5期148-149,152,共3页 Computer Engineering
基金 国家"863"计划基金资助项目"支持大规模分布式网络应用的自主计算环境的研究"(2003AA115230)
关键词 网络异常检测 朴素贝叶斯分类方法 特征选择 互信息 network anomaly detection Naive Bayesian classifier feature selection mutual information
  • 相关文献

参考文献13

  • 1Gavalas D, Greenwood D, Ghanbari M. Advanced Network Monitoring Applications Based on Mobile/Intelligent Agent Technology[J]. Computer Communications, 2002, 34(23): 720-730.
  • 2Tagliaferri R, Eleuteri A, Meneganti M, et al, Fuzzy Min-max Neural Network: From Classification to Regression[J]. Soft Computing, 2001, 4(5): 69-76.
  • 3Basseville M,. Nikiforov I V. Detection of Abrupt Changes Theory and Application[M]. New York: Prentice Hall, 1993.
  • 4Iserman R. Process Fault Detection Based on Modeling and Estimation and Knowledge Processing[J]. Tutorial Paper Automatic, 1999, 29(4): 815-835.
  • 5Siraj A, Bridges S M. Fuzzy Cognitive Maps for Decision Support in an Intelligent Intrusion System[C]//Proc. of ISFA World Congress and the 20th NAFIPS International Conference. Washington D. C., USA: [s. n.], 2001: 2165-2170.
  • 6Gurer D, Khan I, Ogier R, et al. An Artificial Intelligence Approach to Network Fault Management[EB/OL]. (2003-02-01). http:// citeseer.nj,nec.com/105695.html.
  • 7Forrest S, Perrelason A S, Allen L, et al. Self-nonself Discrimination in a Computer[C]//Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy. New Orleans, USA: [s. n.], 1994:202-212.
  • 8Ghosh A K, Michael C, Schatz M. A Real-time Intrusion Detection System Based on Learning Program Behavior[C]//Proceedings of Recent Advances in Intrusion Detection. Piscataway NJ, USA: [s. n.], 93-109.
  • 9Lee W, Stolfo S J. A Data Mining Framework for Building Intrusion Detection Model[C]//Proceedings of the 1999 IEEE Symposium on Security and Privacy. New Orleans, USA:[s. n.], 1999: 120-132.
  • 10Pearl J. Probabilistic Reasoning in Intelligent Systems[M]. San Francisco: Morgan Kaufman Publishers, 1988.

同被引文献17

  • 1李昆仑,黄厚宽,田盛丰,刘振鹏,刘志强.模糊多类支持向量机及其在入侵检测中的应用[J].计算机学报,2005,28(2):274-280. 被引量:49
  • 2陈治平,王雷,李志成.基于密度梯度的聚类算法研究[J].计算机应用,2006,26(10):2389-2392. 被引量:4
  • 3KRUGEL C, TOTH T, KIRDA E. Service specific anomaly detection for network intrusion detection[ C]//Proceedings of the 2002 ACM Symposium on Applied Computing. New York: ACM Press, 2002:201 -208.
  • 4LEE W, STOLFO S J. A framework for constructing features and models for intrusion detection systems[ J]. ACM Transactions on Information and System Security, 2000, 3(4) : 227 - 261.
  • 5DU QIANG, GUNZBERGER M, JU LILI, et al. Centroidal Voronoi tessellation algorithms for image compression, segmentation, and multichannel restoration [ J }. Journal of Mathematical Imaging and Vision, 2006, 24(2): 177-194.
  • 6PORTNOY L, ESKIN E, STOLFO S J. Intrusion detection with unlabeled data using clustering. [ EB/OL]. [ 2009 - 04 - 15]. http:// sneakers, cs. columbia, edu/ids/publications/cluster-ccsdmsa01, pdf.
  • 7Bace R G.Intrusion Detection[M].[S.l.]: Macmillan Technical Publishing,2000.
  • 8Ramadas M S.Ostermann S,Tjaden B.Detecting Anomalous Network Traffic with Self-organizing Maps[C]//Proc.of the 6th International Symposium on Recent Advances in Intrusion Detection.[S.l.]: Springer-Verlag,2003.
  • 9Fukunaga F,Narendra P M.A Branch and Bound Algorithm for Computing K-nearest Neighbors[J].IEEE Trans.on Computers.1975,24(7):750-753.
  • 10UCI KDD Archive.KDD Cup 1999 Data[EB/OL].[2009-10-28].http://kdd.ics.uci.edu/ databases/kddcup99/kddcup99.html.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部