期刊文献+

GF(2^m)域上可配置ECC算术模块的设计与实现 被引量:1

Design and Implementation of Reconfigurable ECC Arithmetic Unit in GF(2m)
下载PDF
导出
摘要 提出一种应用于可配置椭圆曲线密码体制的有限域多项式算术模块结构,乘法器基于已有的digit-serial结构乘法器,利用局部并行的bit-parallel结构,省去了模约简电路,使乘法器可适用于任意不可约多项式。平方器结构利用LSB或LSD乘法器以及加法器来计算模平方,通过数据接口控制输入数据的格式,可以满足不同域值有限域点乘运算的需求。 A finite field polynomial arithmetic unit architecture is proposed in this paper for reconfigurable ECC. The multiplier based on previous digit-serial multiplier architecture uses bit-parallel architecture of local parallel to eliminate reduction modulo circuit effectively, and the multiplier architecture is the same with arbitrary irreducible polynomials. The squaring architecture computes squares by using an LSB, or an LSD multiplier with an adder. Data format of import is controlled through data interface, which achieves requirements of point multiplication for different finite fields.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第5期163-165,共3页 Computer Engineering
关键词 有限域 二进制有限域 椭圆曲线密码体制 Galois Field(GF) GF(2m) ECC
  • 相关文献

参考文献6

  • 1曾晓洋,顾震宇,周晓方,章倩苓.可重构的椭圆曲线密码系统及其VLSI设计[J].小型微型计算机系统,2004,25(7):1280-1285. 被引量:5
  • 2Orlando G, Paar C. A High-performance Reconfigurable Elliptic Curve Processor for GF(2^m)[c]//Proc. of Workshop on Cryptographic Hardware and Embedded Systems. [S. l.]: Springer- Verlag, 2000.
  • 3Ebede H, Gura N S, Chang Shan. A Cryptographic Processor for Arbitrary Elliptic Curves over GF(2^m)[C]//Proc. of the IEEE 14th Int'l Conference on Application-specific Systems, Architectures and Processors. Hague, Netherlands: IEEE Press, 2003-06: 444-454.
  • 4Department of Commerce, National Institute of Standards and Technology. FIPS 186-2 Digital Signature Standard(DSS)[S]. 2000-01.
  • 5Gaudry P, Hess F, Smart N P. Constructive and Destructive Facets of Weil Descent on Elliptic Curves[Z], (2000-01-17). http://www. hpl.hp.com/techreports/2000/hpl-2000-10.html.
  • 6Orlando G, Paar C. An Efficient Squaring Architecture for GF(2^m) and Its Applications in Cryptographic Systems[J]. Electronic Letters, 2000, 36(13): 1116-1117.

二级参考文献11

  • 1[1]Koblitz N. Elliptic curve cryptosystems[J]. Mathematics of computation, 1987,48(4): 203-209.
  • 2[2]Miller V S. Use of elliptic curves in cryptography[C]. In:CRYPTO85, 1986,417-426.
  • 3[3]Menezes A J. Elliptic curve public key cryptosystems[M]. Kluwer Academic Publisher, 1993.
  • 4[4]Chen Aimin, Yu Kangyou, Guan Haimin. Computer security and secrecy[M]. Beijing:Electronics Press, 1992.
  • 5[5]Agnew G B. An implementation of elliptic curve cryptosystems over F2155[J]. IEEEE Journal on Selected in Comm., 1993,11(5): 804-813.
  • 6[6]Menezes A, Oorschot P V and Vanstone S. Handbook of applied cryptography[C]. CRC Press, 2nd Edition, 1996.
  • 7[7]IEEE P1363. Standard specifications for public key cryptography[Z]. (Draft Version 10), 2000.
  • 8[8]ElGamal T. A public key cryptosystem and signature scheme based on discrete logarithms[C]. Advance in Cryptology-Proceeding of CRYPTO84, 1984,10-18.
  • 9[9]Rosner M C. Elliptic curve cryptosystems on re-configurable hardware[D]. M.Sc. thesis, Dept. of Electric Engineering, Worcester Polytechnic Institute, USA, 1998.
  • 10[10]Sutikno S, Effendi R, Surya A. Design and implementation of arithmetic processor F2155 for ellitpic curve cryptosystems[C]. In:The 1998 IEEE Asia-Pacific Conference On Circuits and Systems, 1998, 647-650.

共引文献4

同被引文献4

  • 1Koblitz N.Elliptic Curve Cryptosystems[J].Mathematics of Computation,1987,48(177):203-209.
  • 2Hankerson D,Menezes A,Vanstone S.Guide to Elliptic Curve Cryptography[M].New York,USA:Springer-Vedag,2004.
  • 3McIvor C,McLoone M,McCanny J V.FPGA Montgomery Modular Multiplication Architectures Suitable for ECCs over GF(p)[C]//Proc.of IEEE International Symposium on Circuits and Systems.Vancouver,Canada:[s.n.],2004:509-512.
  • 4Lopez J,Dahab R.Fast Multiplication on Elliiptic Curves over GF(2m)Without Precomputation[C]//Proc.of Cryptographic Hardware and Embedded Systems.[s.l.]:Springer-Verlag,1999:316-327.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部