摘要
对多变量时间序列进行分析有利于更好地了解各时间序列的特性。根据相关性的时间序列在商空间模型中,可依据信息相关性,该文综合利用多个相关序列提供的信息对其中一个序列进行了预测,通过商空间理论的分解和合成法减小信息不完备产生的影响,从而获得更多准确信息和规则。
Researching these time-series which are interdependent as integration, namely multi-variable time-series analysis, the properties of these time-series can be realized better. For the forecasting question of time-series, in this paper, the relative time-series are dealt synthetically. In quotient space model, based on relativity of information, in order to reduce the impact of the incomplete information, the decomposition and synthesis method of quotient space theory is introduced to obtain more accurate information and rules. The result of experiments shows that the method is effective. Therefore, the solution to the problems is undoubtedly a reasonable approach.
出处
《计算机工程》
CAS
CSCD
北大核心
2008年第5期185-187,共3页
Computer Engineering
基金
国家“973”计划基金资助项目(2004CB318108)
国家自然科学基金资助项目(60675031,60475017)
教育部博士点基金资助项目(20040357002)
安徽省自然科学基金资助项目(0504200208)
安徽省教育厅重点自然科学研究基金资助项目(2006KJ015A)
安徽省教育厅自然科学研究基金资助项目(2005KJ053)
关键词
商空间
商拓扑
时间序列
预测模型
quotient space
quotient topology
time-series
forecasting model