期刊文献+

基于Contourlet变换和Wiener滤波的图像降噪 被引量:1

Image Denosing Based on Contourlet Transform and Wiener Filter
下载PDF
导出
摘要 提出一种新的基于Contourlet变换和Wiener滤波的图像降噪方法。该方法充分利用Contourlet变换域系数服从广义高斯分布的特点,在Contourlet域采用Bayes收缩阈值法进行预降噪,采用Wiener滤波法对预降噪图像中的残留噪声进行进一步处理,以提高图像的恢复精度。仿真结果表明,该方法较传统的Contourlet域降噪方法具有更好的降噪效果,进一步提高了PSNR值,降低了MSE值,获得了更好的图像恢复质量。 A new image denosing method based on Contourlet transform and Wiener filtering is proposed. By using the statistical information, the Contourlet domain coefficients of the original image are estimated by Bayes shrink threshold algorithm. For further denoising, the final denoising image will be estimated through Wiener filtering. Experimental results show that the denoising effect of this method is better than that of other methods based on Contourlet transform.
作者 刘盛鹏 方勇
出处 《计算机工程》 CAS CSCD 北大核心 2008年第5期210-212,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60472103) 上海市优秀学科带头人基金资助项目(05XP14027) 上海市重点学科基金资助项目(T0102)
关键词 图像处理 CONTOURLET变换 WIENER滤波 预降噪图像 image processing Contourlet transform Wiener filtering pre-denoised image
  • 相关文献

参考文献12

  • 1刘斌,彭嘉雄.具有紧支撑正交非张量积小波的图像融合[J].光学学报,2004,24(9):1214-1218. 被引量:16
  • 2Donoho D L. Denoising by Soft Thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627.
  • 3Donoho D L, Johnstone I M. Adapting to Smoothness via Wavelet Shrinkage[J]. Journal of the Statistical Association, 1995, 90(12): 1200-1224.
  • 4Do M N, Vetterli M. Contourlet: A Directional Multiresolution Image Representation[C]//Proc. of IEEE International Conference on Image Processing. [S. l.]: IEEE Press, 2002: 357-360.
  • 5He Zhihua, Bystrom M. Reduced Feature Texture Retrieval Using Contourlet Decomposition of Luminance Image Component[C]// Proceedings of International Conference on Communications, Circuits and Systems. Hong Kong, China: [s. n.], 2005: 878-882.
  • 6Do M N, Vetterli M. The Contourlet Transform: An Efficient Directional Multiresolution Image Representation[J]. IEEE Transactions on Image Processing, 2003, 14(12): 2091- 2106.
  • 7Do M N, Vetterli M. Contourlets Beyond Wavelets[M]. [S. l.]: Academic Press, 2002: 1-27.
  • 8Eslami R, Radha H. The Contourlet Transform for Image De-noising Using Cycle Spinning[C]//Proc. of Asilomar Conference on Signal, System, and Computers. [S. l.]: IEEE Press, 2003: 1982-1986.
  • 9Coifman R R, Donoho D L. Translation Invariant Denoising[M]. New York: Springer-Verlag, 1994: 125-150.
  • 10Grace Chang, Yu Bu, Vetterli M. Adaptive Wavelet Thresholding for Image Denoising and Compression[J]. IEEE Trans. on Image Proc., 2000, 9(9): 1532-1546.

二级参考文献25

  • 1Crouse M S, Nowak R D, Baraniuk R G. Wavelet-based signal processing using hidden Markov models. IEEE Trans Signal Processing,1998,46(4) :886 -902.
  • 2Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage. J Amer Statist Assoc,1995,90(12) : 1200 - 1224.
  • 3Chambolle A, DeVore R A, Lee N, et al. Nonlinear wavelet image processing : Variational problems, compression, and noise removal through wavelet shrinkage. IEEE Trans Image Processing,1998,7(2) :319 -335.
  • 4Jansen M, Malfait M, Bultheel A. Generalized cross validation for wavelet thresholding. Signal Process, 1997 ,56(1) :33 -44.
  • 5Johni R L, Crump V J, Fisher T R. Image subband coding using arithmetic and trellis coded quantization. IEEE Trans CSVT, 1995,5(12) :515 -523.
  • 6Chang S G, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression. IEEE Trans Image Processing,2000,9(9) :1532 - 1546.
  • 7David L H. An introduction to multi-sensor fusion. Proc.IEEE, 1997, 85(1): 6-23.
  • 8Burr P T, Adeson E H. The laplacian pyramid as acompact image code. IEEE Trans. on Commun. , 1983, 31(4): 532-540.
  • 9Toet A. Multiscale contrast enhancement with application to image fusion. Opt. Engng. , 1992, 31(5): 1026-1031.
  • 10Toet A. Image fusion by a ratio of low-pass pyramid.Pattern Recognition Lett. , 1989. 9(4) : 245-253.

共引文献50

同被引文献7

  • 1Bryt O, Elad M. Compression of Facial Images Using the KSV'D Algorithm [J]. Journal of Visual Communication and Image Representation, 2008, 19(4): 27-36.
  • 2Elad M, Aharon M. Image Denoising via Sparse and Redundant Representations over Learned Dictionaries[J]. IEEE Transactions on Image Processing, 2006, 15(12): 3736-3745.
  • 3Wright J, Yang A Y, Ganesh A, et al. Robust Face Recognition via Sparse Representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (2): 210-227.
  • 4Candes E J. Ridgelet: Theory and Applications[D]. California, USA: Stanford University, 1998.
  • 5Portilla J, Strela V. Wainwright M J, et al. Image Denoising Using Scale Mixtures of Gaussian in Wavelet Domain[J]. IEEE Transactions on Image Processing, 2003, 12(11): 1338-1351.
  • 6蔡泽民,赖剑煌.一种基于超完备字典学习的图像去噪方法[J].电子学报,2009,37(2):347-350. 被引量:48
  • 7王海松,王伟.基于曲波变换和小波变换的图像去噪算法[J].计算机工程,2009,35(15):217-219. 被引量:6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部