摘要
文章使用李-代数方法对波动率弹性为常数(CEV)的时间依赖型期权提供一种定价方法。从弹性系数不同的波动率弹性为常数(CEV)的模型中得到时间依赖模型期权价值的解析解。其结果表明期权的价值相对于波动率期限结构是敏感的。如果对利率期限结构和分红期限结构使用不同的函数形式,将可能会得到更多的结果。此外,李-代数方法很容易被扩展到具有明确代数结构的另外一些期权定价模型,如带交易费的CEV障碍期权。
This paper provides a method for pricing options in the constant elasticity of variance(CEV) model environment using the Lie-algebraic technique when the model parameters are time-dependent. Analytical solutions for the option values incorporating time-dependent model parameters are obtained in various CEV processes with different elasticity factors. The numerical results indicate that option values are sensitive to volatility term structures. It is also possible to generate further results using various functional forms for interest rate and dividend term structures.Furthermore, the Lie-algebraic approach is very simple models with well-difined algebraic structures,example:Valuation of and can be easily extended to other option pricing single-barrier CEV options with transaction costs.
出处
《四川理工学院学报(自然科学版)》
CAS
2008年第1期4-7,共4页
Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金
佛山市科技发展专项基金(项目编号:2005070021)