期刊文献+

时间依赖型CEV带交易费的期权定价模型

Time-dependent Parameters of Constant Elasticity of Variance Option Pricing Model with Transaction Costs
下载PDF
导出
摘要 文章使用李-代数方法对波动率弹性为常数(CEV)的时间依赖型期权提供一种定价方法。从弹性系数不同的波动率弹性为常数(CEV)的模型中得到时间依赖模型期权价值的解析解。其结果表明期权的价值相对于波动率期限结构是敏感的。如果对利率期限结构和分红期限结构使用不同的函数形式,将可能会得到更多的结果。此外,李-代数方法很容易被扩展到具有明确代数结构的另外一些期权定价模型,如带交易费的CEV障碍期权。 This paper provides a method for pricing options in the constant elasticity of variance(CEV) model environment using the Lie-algebraic technique when the model parameters are time-dependent. Analytical solutions for the option values incorporating time-dependent model parameters are obtained in various CEV processes with different elasticity factors. The numerical results indicate that option values are sensitive to volatility term structures. It is also possible to generate further results using various functional forms for interest rate and dividend term structures.Furthermore, the Lie-algebraic approach is very simple models with well-difined algebraic structures,example:Valuation of and can be easily extended to other option pricing single-barrier CEV options with transaction costs.
出处 《四川理工学院学报(自然科学版)》 CAS 2008年第1期4-7,共4页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金 佛山市科技发展专项基金(项目编号:2005070021)
关键词 期权 交易费 时间依赖 LIE代数 波动率弹性为常数(CEV) options transaction costs time-dependent Lie-algebra constant elasticity of variance
  • 相关文献

参考文献12

  • 1Paul Wilmott. The Theory and Practice[M]. New York: John Wiley&Sons Ltd.,1999.
  • 2John C Cox,Mark Rubinstein. Options Markets[M].Upper Saddle River,NJ :Printice Hall,2001.
  • 3John C.Hull. Fundamentals of Futures and Options Markets[M]. Upper Saddle River,NJ: Prentice Hall,2001.
  • 4John C.Hull.Options,Futures,and Other Derivatives[M].Upper Saddle River,NJ :Prentice Hall,2001.
  • 5曲军恒,沈尧天,姚仰新.有交易费的几何平均亚式期权的定价公式[J].华南理工大学学报(自然科学版),2004,32(5):84-87. 被引量:18
  • 6Lo C F,Yuen P H, Hui C H.Option risk measurement with time-dependent paramenters [J].International Journal of Theoretical and Applied Finance.2000, 3(3):581-589.
  • 7Lo C F, Hui C H.Valuation of financial derivatives with time-depengdent parameters: Lie-algebraic approach. Quantitative Finance[J].2001,1:73-78.
  • 8Lo C F, Yuen P H, Hui C H.Constant elasticity of variance option pricing model withtime-dependent parameters [J].International Journal of Theoretical and Applied Finance,2000,3(4):661-674.
  • 9Lo C F, Lee H C, Hui C H.Asimple approach for pricing barrier options with time-dependent parameters. Quantitantive Finance[J]. 2003,3:98-107.
  • 10许少敏,蒋鲁敏.有交易费用的衍生物定价模型[J].华东师范大学学报(自然科学版),2002(2):22-25. 被引量:9

二级参考文献7

  • 1[1]Wilmott P, Howison S, Dewynne J.The mathematics of financial derivatives[M].England: Cambridge University Press, 1996.
  • 2[2]Ksaku Yosida.Functional analysis[M].New York: Springer-verlag Berlin Heidelberg, 1978.
  • 3John C Hull.Options,Futures,and Other Derivatives[M].Upper Saddle River,NJ: Prentice Hall,2001.
  • 4John C Cox,Mark Rubinstein.Options Markets [M].Upper Saddle River,NJ:Prentice Hall.,2001.
  • 5Paul Wilmmot,San Howison.The Mathematic of Financial Derivates[M].Cambridge :Cambridge University Press,1995.
  • 6郑小迎,陈金贤.有交易成本的期权定价研究[J].管理工程学报,2001,15(3):35-37. 被引量:16
  • 7许少敏,蒋鲁敏.有交易费用的衍生物定价模型[J].华东师范大学学报(自然科学版),2002(2):22-25. 被引量:9

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部