期刊文献+

KIM算法的最优性 被引量:4

The Optimality of the KIM Algorithm
下载PDF
导出
摘要 研究工件的就绪时间可以不相同、但是与交货期有"一致性"关系的误工问题.1978年Kise,Ibaraki,Mine提出算法(简称为KIM算法),证明他们提出的KIM算法可以得到这个误工问题的最优解.最近李杉林、陈志龙、唐国春用反例指出Kise,Ibaraki,Mine证明最优性时提出的引理2是错误的,并用新的方法证明KIM算法的最优性.越民义则给出一个非常简洁的证明.本文分析引理2的错误所在,给出修改后的引理2’,由此似乎应该相应修改KIM算法,然而我们证明原来的KIM算法仍然可以得到最优解. We address the scheduling problem for the case of agreeability of release times with due dates to minimize the number of late jobs. In 1978 Kise, Ibaraki and Mine et.al. proposed an algorithm (abbreviated to the KIM algorithm) for the problem and proved that it could get the optimal solution. Recently, using a counter-example, Li Shanlin, Chen Zhilong and Tang Guochun et.al. pointed out that the Lemma 2 was wrong when Kise, Ibaraki and Mine et.al. proved the optimality of the algorithm. Yue Minyi also gave a simple proof to it. In this paper we analyze and point out the error of the Lemma 2 and give a revised Lemma 2'. Therefore, we should revise the KIM algorithm, also. Fortunately, at last, we prove that the KIM algorithm still gets the optimal solution.
出处 《运筹学学报》 CSCD 北大核心 2007年第4期116-120,共5页 Operations Research Transactions
基金 国家自然科学基金项目(No.10371071 70731160015) 运筹学与系统工程重庆市市级重点实验室资助项目.
关键词 运筹学 排序 最优性 算法 Operations research, scheduling, optimality, algorithm
  • 相关文献

参考文献8

二级参考文献15

  • 1黄婉珍,上海科技大学学报,1987年,4卷,116页
  • 2赵民义,数学的实践与认识,1976年,3期,59页
  • 3赵民义,数学的实践与认识,1976年,4期,62页
  • 4MOORE J M. An n-job, One Machine Sequencing Algorithm for Minimizing the Number of Late Jobs [ J ]. Management Science, 1968, 15:102-109.
  • 5BRUCKER P. Scheduling Algorithms [ M ]. 4th edition, Heidelberg : Springer, 2004.
  • 6PINEDO M. Scheduling: Theory, Algorithms, and Systems [ M]. 2nd edition, New Jersey: Prentice Hall, 2002.
  • 7SIDNEY J B. An extension of Moore's Due Date Algorithm [ A]. Symposium on the Theory of Scheduling and its Applications [ C ]. Berlin : Springer, 1973. 393-398.
  • 8KISE H, IBARAKI T, MINE H. A Solvable Case of the One-machine Scheduling Problem with Ready and Due Times[ J]. Operations Research, 1978, 26 : 121-126.
  • 9LAWLER E L. Sequencing to Minimize the Weighted Number of Tardy Jobs [ J ]. RAIRO, 1976, S10 (5) : 27- 33.
  • 10Kise H.,Ibaraki I.,Mine H.A Soluable case of the one machine scheduling problem with ready and due time[J].Operations Research,1978,26:121-126.

共引文献17

同被引文献47

  • 1孙叶平,唐万梅,唐国春.Moore-Hodgson算法最优性的新证明[J].重庆师范大学学报(自然科学版),2007,24(3):4-7. 被引量:12
  • 2MOORE J M. An n-job, one machine sequencing algorithm for minimizing the number of late jobs[J]. Management Science, 1968, 15:102-109.
  • 3SIDNEY J B. An extension of moore's due date algorithm[C]//Symposium on the Theory of Scheduling and its Applications, Berlin: Springer, 1973: 393-398.
  • 4LAWLER E L. Sequencing to minimize the weighted number of tardy jobs[J]. Revue d'Automatiqued'Informatique et de Recherche Operationnelle, 1976, S10 (5): 27-33.
  • 5KISE H T I, MINE H. A solvable case of the one-machine scheduling problem with ready and due times[J]. Operations Research, 1978, 26:121-126.
  • 6PINEDO M S. Scheduling: Theory, Algorithms, and Systems[M]. New Jersey: Prentice-Hall, 2002.
  • 7Moore J M. An n-job, one machine sequencing algorithm for minimizing the number of late jobs [ J ]. Management Science, 1968. 15 : 102-109.
  • 8Huo Y, Leung J Y-T, Zhao H. Complexity of two dual criteria scheduling problems [ J ]. Operations Research Letters,2007.35 (2) : 211-220.
  • 9Pinedo M. Scheduling:Theory,Algorithms,and Systems [ M]. 2nd edition. New Jersey:Prentice Hall,2002.
  • 10Brucker P. Scheduling Algorithms [ M ].4th edition. Heidelberg:Springer,2004.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部