期刊文献+

矩阵方程A^TXA=D的条件数与向后扰动分析 被引量:7

Condition Numberers and Backward Perturbation Analysis for the Matrix Equation A^TXA=D
原文传递
导出
摘要 讨论矩阵方程ATXA=D,该方程源于振动反问题和结构模型修正.本文利用Moore-Penrose广义逆的性质,给出该方程解的条件数的上、下界估计.同时,利用Schauder不动点理论给出该方程的向后扰动界,这些结果可用于该矩阵方程的数值计算. This paper deals with the matrix equation ATXA=D, which arises in inverse problems in vibration and structural model updating. By using the properties of Moore-Penrose generalized inverse, the upper and lower bounds of the condition numbers associated with solving the matrix equation are presented. The backward perturbation bound for the matrix equation is given by using Schauder fixed-point theory. The results can be used in numerical solution for the matrix equation.
作者 杨兴东 戴华
出处 《应用数学学报》 CSCD 北大核心 2007年第6期1086-1096,共11页 Acta Mathematicae Applicatae Sinica
基金 江苏省高校自然科学基础研究项目(No:07KJD110127) 南京信息工程大学科研基金资助项目(No:Y630)资助项目.
关键词 矩阵方程 条件数 对称半正定解 向后扰动 matrix equation condition number symmetric positive semidefinite solution backward perturbation
  • 相关文献

参考文献1

二级参考文献1

共引文献41

同被引文献31

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部