期刊文献+

自旋对半导体量子点中强耦合磁极化子性质的影响 被引量:3

Influence of spin on the properties of a strong coupling magnetopolarons in semiconductor quantum dots
原文传递
导出
摘要 在考虑电子自旋的情况下,应用么正变换和线性组合算符法研究了半导体量子点中强耦合磁极化子振动频率、基态能和基态结合能的性质。数值计算结果表明:电子自旋使磁极化子基态结合能分裂为二Eb(1/2)和Eb(-1/2),其间距与外磁场B成线性关系。当回旋共振频率小于和大于10倍声子振动频率时,Eb(1/2)随B的增大分别缓慢和迅速减小。当回旋共振频率小于和大于20倍声子振动频率时,Eb(-1/2)随B的增大分别迅速和缓慢增大。当回旋共振频率为440倍声子振动频率时,Eb(-1/2)取最大值为44倍声子能量。之后Eb(-1/2)随B的增大逐渐减小。随着磁场的加强,电子自旋影响增大。当回旋共振频率超过声子振动频率的5.97和820倍时,电子自旋能量已分别大于电子所受束缚势和电子与LO声手之间的诱生势。 Considering the electron spin, the vibration frequency, ground state energy and ground state binding energy of a strong coupling magnetopolaron in semiconductor quantum dots were derived by using the linear combination operator and perturbation method. Numerical calculation show that the electron spin divides the ground state binding energy into two Eb (-1/2) and Eb (-1/2) ,and the energy spacing has linear relation with outside magnetic field B. When cyclotron resonance frequency(CRF) 10 times smaller and larger than phonon vibration frequency(PVF),Eb (-1/2) respectively slowly and rapidly reduced with B increasing. When CRF; large than larger than; partly respectiver 20 times smaller and large than PVF,Eb(-1/2)partly rapidly and slowly increases with B increasing. When CRF 440 times larger than PVF,Eb(-1/2)'s maximum value is 44 times larger than phonon energy. Then Eb (-1/2) slowly reduces with B increasing. The spin influence will increase with B increasing. When CRF 5.97 times and 820 times larger than PVF,the electron spin energy has already larger than the binding potential and the induced potential caused by the interaction between the electron and LO phonons.
作者 刘冕 李子军
出处 《光电子.激光》 EI CAS CSCD 北大核心 2008年第3期412-415,共4页 Journal of Optoelectronics·Laser
基金 山东省自然科学基金资助项目(Y2003A01)
关键词 自旋 半导体量子点 强耦合磁极化子 振动频率 基态结合能 spin semiconductor quantum dots strong coupling magnetopolaron vibration frequency ground state binding energy
  • 相关文献

参考文献8

  • 1张晓松,开桂云,李岚,李燕,韩旭,王志,刘艳格,董孝义.ZnS:Er量子点材料制备及其受激发光特性研究[J].光电子.激光,2006,17(12):1487-1491. 被引量:1
  • 2Zhu K D,Kobayashi T. Magnetic field effects on strong-coupling polarons in quantum dots[J]. Phys Lett A,1994,190:337-340.
  • 3Zhou H Y,Gu S W,Shi Y M. Effects of strong coupling magnetopolaron in quantum dot[J]. Modern Phys Lett B,1998. ,12(17) :693-701.
  • 4Mukhopadhyay S,Chatterjee A. The ground and the first exited states of an electron in a multidimensional polar semiconductor quantum dot:an all-coupling variational approach[J]. J Phys Condens Matter, 1999,11:2071-2077.
  • 5Mukhopadhyay S, Chatterjee A. Rayleigh-Schroedinger perturbation theory for electron-phonon interaction effects in polar semiconductou quantum dots with parabolic confinement[J]. Phys Lett A, 1995,204: 411-417.
  • 6王海龙,秦文华,赵传华.InAs/GaAs自组装量子点结构的能带不连续量[J].光电子.激光,2007,18(1):74-77. 被引量:4
  • 7王立国,肖景林,李树深.半导体量子点中强耦合磁极化子的性质[J].Journal of Semiconductors,2004,25(8):937-941. 被引量:10
  • 8J L Xiao,W Xiao. Influence of the inter action between phonons on the properties of the surface magnetopolaron in polar crystals[J]. Phys Rev,1998 ,B58:1678-1688.

二级参考文献45

  • 1Sikorski C,Merkt V. Spetroscopy of electronic states in InSb quantum dots. Phys Rev Lett, 1989,62: 2164
  • 2Lorke A,Kotthaus J P,Ploog K. Coupling of quantum dots on GaAs. Phys Rev Lett,1990,64:2559
  • 3Lee C M,Gu S W. Polaron effect on energy spectrum in twoelectron quantum dot under magnetic field. Solid State Commnn, 2000,116: 51
  • 4Kandemir B S,Altanhan T,Polaron effects on an anisotropic quantum dot in a magnetic field. Phys Rev B, 1998,60: 7
  • 5Peeters F M. Magneto-optics in parabolic quantum dots. Phys Rev B,1990,42:1486
  • 6Maksym P A,Chakraaborty T,Quantum dots in a magnetic field role of electron-electron interactions. Phys Rev Lett,1990,65:108
  • 7Yip S K. Magneto-optical absorption by electrons in the presence of parabolic confinement potential. Phys Rev B, 1991,43:1707
  • 8Zhu K D, Kobayashi T. Magnetic field effects on strongcoupling polarons in quantum dots. Phys Lett A, 1994,190:337
  • 9Zhou H Y,Gu S W,Shi Y M. Effects of strong coupling magnetopolaron in quantum dot. Modern Phys Lett B, 1998,12:693
  • 10Mukhopadhyay S,Chatterjee A. The ground and the first exited states of an electron in a multidimensional polar semiconductor quantum dot: an all-coupling variational approach. J Phys Condens Matter, 1999,11:2071

共引文献12

同被引文献47

  • 1王保柱,安胜彪,文环明,武瑞红,王晓君,王晓亮.MOCVD生长Al_(0.48)Ga_(0.52)N/Al_(0.54)Ga_(0.36)N多量子阱的结构和光学特性[J].光电子.激光,2009,20(11):1454-1457. 被引量:4
  • 2赵凤岐,周炳卿.外电场作用下纤锌矿氮化物抛物量子阱中极化子能级[J].物理学报,2007,56(8):4856-4863. 被引量:16
  • 3Tomassini N, Schiumarini D,et al, Exciton and polariton dispersion curves of Inx Ga1-x As/GaAs(001) superlattice quantum wells: Model calculation[J]. Phys Rev B, 2007,75 : 085317 ( 1- 9).
  • 4Kaliteevski M A, Brand S,Abram R A. Exciton polaritons in a cylindrical microcavity with an embedded quantum wire [J]. Phys Rev B,2000,61:13791-13797.
  • 5Agranovich V M,Gartstein Yu N. Nature and dynamics of lowenergy exciton polaritons in semiconductor microcavities[J]. Phys Rev B, 2007,75 : 075302 ( 1-7 ).
  • 6Lambert K van Vugt,Sven Ruhle. Exciton Polaritons Confined in a ZnO Nanowire Cavity[J]. Phys Rev lett, 2006,97: 147401 (1-4).
  • 7Bajoni D, Wertz E, Senellart P, et al. Excitonic Polaritons in Semiconductor Micropillars [J]. Acta Physica Polonica A, 2008,114( 5 ) : 933-943.
  • 8Utsunomiya S, Tian L, et al, Observation of Bogoliubov excitations in exciton-polariton condensates [J]. Nature physics, 2008,4:700-705.
  • 9Bao J,Liang X X. Bulk and surface phonon-polaritons in ternary mixed crystals[J]. J Phys: Condens Matter, 2006,18: 8229- 8239.
  • 10Tilley D R. Theory of resonant Brillouin scattering via excitonpolaritons[J]. J Phys C: Solid State Physics, 1980,13(5) : 781- 801.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部