期刊文献+

加权框架的基本性质及其与框架乘子的关系 被引量:1

The properties of weighted frames and a relationship between weighted frames and frame multipliers
下载PDF
导出
摘要 研究了加权框架的基本性质及其与框架乘子的关系.首先给出了加权框架的定义,在此基础上证明了加权框架的一些基本性质:两个加权框架的并仍是加权框架;半正规序列与加权框架的乘积仍是加权框架,并用实例进行了说明.同时给出了加权框架与框架乘子的联系,目的在于将加权框架和算子联系起来,为进一步研究奠定理论基础. This article firstly introduces the definition of weighted frames and some properties of weighted frames are proved, such as the union of two weighted frames is still a weighted frame; the product of a semi-normalized sequence and a weighted frame is still a weighted frame. Some examples are given. Moreover, a relationship between weighted frames and frame multipliers is discussed. A bridge between weighted frames and multipliers is then built, which will be benefit for the further study.
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第2期1-4,共4页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10571113)
关键词 框架 加权框架 框架乘子 frame weighted frame frame multiplier
  • 相关文献

参考文献11

  • 1程蓉,李万社.利用两尺度相似变换提高有限元多尺度函数的逼近阶[J].陕西师范大学学报(自然科学版),2005,33(2):22-25. 被引量:5
  • 2程蓉,李万社.双正交Hermite Cubics的对称预滤波设计[J].信号处理,2005,21(z1):12-15. 被引量:3
  • 3李万社,刘志国.一种有效的小波紧框架设计[J].西安电子科技大学学报,2006,33(4):665-669. 被引量:6
  • 4Bogdanova I, Vandergheynst P, Jacques L. Stereographic wavelet frames of the sphere [ J ]. Applied Computational Harmonic Analysis, 2005,19:223-252.
  • 5Antoine J P, Demanet L, Jacques L. Wavelets on the sphere: Implementation and approximations[J].Applied Computational Harmonic Analysis, 2002,13:177-200.
  • 6Stephane Mallat著,杨力华,戴道清,黄文良译.信号处理的小波导引[M].北京:机械工业出版社,2002.
  • 7Casazza P G. The art of frame theory [ J ]. Taiwan Residents Journal Mathematics, 2000(4) : 129-202.
  • 8Christensen O. An introduction to frames and Riesz bases [M]. Basel: Birkhauser, 2003.
  • 9Balazs P. Regular and irregular Gabor multipliers with application to psychoacousties masking [ D]. Vienna: University of Vienna, 2005.
  • 10Peter Balazs, Antoine J P. Weighted and controlled frames[M]. Holand: Elsevier Science, 2006.

二级参考文献21

  • 1[1]Lebrun J, Vetterli M. Balanced multiwavelets theory and design [J]. IEEE Transactions on Signal Processing. 1998, 46(4): 1119~1125.
  • 2[2]Lebrun J, Vetterli M. High-order balanced multiwavelets:theory, factorization, and design [J]. IEEE Transactions on Signal Processing. 2001, 49 (9): 1918~1929.
  • 3[3]Xia X. -G, Geronimo J. S, Hardin D. P, and Suter B. W.Design of prefilters for discrete multiwavelet transforms [J].IEEE Transactions on Signal Processing. 1996, 44 (1): 25~35.
  • 4[4]Xia X. -G. A new prefilter design for discrete multiwavelet transforms [J]. IEEE Transactions on Signal Processing.1998,46 (6): 1558~1570.
  • 5[5]Hsung T. -C, Sun M. -C, Lun D. P. -K and Siu W. -C.Symmetric prefilters for multiwavelets [J]. IEE Proc. -Vis.Image Signal Process. 2003, 150 (1): 59~68.
  • 6[6]Strela V. Multiwavelets: theory and applications [D].Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, 1996.
  • 7Alpert B,Beykin G,Gives D,et al.Adaptive solution of partial differential equations in muttiwavelet bases [J].Journal of Cc-nputational Physics,2002,182(1):149-190.
  • 8Zhang Jiankang,Daridson,Thimthy N,et al.Design of interpolating biorthogonal muttiwavelet system with compact support [J].Applied and Computational Harmonic Analysis,2001,11(3):420-438.
  • 9Cui Lihong,Cheng Zhengxing.An algorithm for constructing symmetric orthogonal muttiwavdets by matrix symmetric extension [J].Applied Mathematics and Computation,2004,149(1):227-243.
  • 10Plonka G,Strela V.Construction of multi-scaling functions with approximation and symmetry[J].SIAM Journal on Mathematical Analysis, 1998,29(2):481-510.

共引文献21

同被引文献11

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部