期刊文献+

有限热源吸收式制冷机的热力学建模与分析 被引量:1

THERMODYNAMIC MODELING AND ANALYSIS OF AN IRREVERSIBLE ABSORPTION CHILLER WITH FINITE HEAT CAPACITIES
下载PDF
导出
摘要 考虑了有限热容、有限速率传热以及工质内部耗散的影响,建立了吸收式制冷机的热力学模型。在该模型中,吸收式制冷机被等价为一个不可逆卡诺热机驱动不可逆卡诺制冷机的联合循环系统。为描述循环的内不可逆性,引入了两个内不可逆性参数I_(he)和I_r。其中,I_(he)用于描述热机循环的内不可逆性,I_r用于描述制冷循环的内不可逆性。通过对给定供热率下热机热效率和给定制冷率下两热源制冷机性能系数解析表达式的推导,并根据等价系统的定义,获得了吸收式制冷机给定制冷率下性能系数的解析表达式,利用该表达式详细地分析了各参数对性能系数的影响。所得公式和分析结论对实际系统的理解、设计以及分析具有一定的理论指导作用。 A thermodynamic model for an irreversible absorption chiller was presented, in which not only the irreversibilities of finite-rate heat transfer and internal dissipations of the working fluid were considered, but also the effects of finite heat capacities on the system performance were considered, An absorption chiller was treated as a combined cycle system of an irreversible Carnot heat engine driving an irreversible Carnot chiller in this model. Two internal irreversibility parameters Ihe and Ir were introduced to characterize the irreversibility inside the cycle (say, Ihe is for the heat engine cycle and lr is for the refrigeration cycle). First, the analytical expressions for the thermal efficiency of the heat engine under a given heating rate and the coefficient of performance (COP) of the two-heat-source chiller under a given cooling rate were derived, and then the analytical expression for the COP of the absorption chiller under a given cooling rate was obtained in term of the definition of the equivalent system. A detailed parametric study was performed to analyze their effects on the COP. The formulas and analytical conclusions obtained here provide a useful theoretical guide to the comprehension, design and analysis of a real absorption chiller.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2008年第2期209-213,共5页 Acta Energiae Solaris Sinica
关键词 吸收式制冷机 有限热容 热力学建模 性能系数解析表达式 参数分析 absorption chiller finite capacities thermodynamic modeling analytical expression of the COP parametric analysis
  • 相关文献

参考文献10

  • 1Chen J. The equivalent cycle system of an endoreversible absorption refrigerator and its general performance characteristics [J]. Energy, 1995, 20(10): 995-1003.
  • 2Lin G, Yan Z. The optimal performance of an irreversible absorption refrigerator[J]. J Phys D: Appl Phys, 1997, 30: 2006-2011.
  • 3Chen J, Schouten J A. Optimum performance characteristics of an irreversible absorption refrigeration system [ J]. Energy Conversion and Management, 1998, 39 (10) : 999-1007.
  • 4Zheng T, Chen L, Sun F, et al. Performance optimization of an irreversible four-heat-reservoir refrigerator [ J ]. Applied Energy, 2003, 76: 391-414.
  • 5郑彤,陈林根,孙丰瑞.线性唯象传热定律下不可逆四热源制冷循环最优性能[J].太阳能学报,2003,24(6):856-865. 被引量:3
  • 6Gpktun S. Finite-time optimization of a solar-driven heat engine[J]. Solar Energy, 1996, 56 (6): 617-620.
  • 7Khan J R, Zubair S M. Thermodynamic optimization of finite time vapor compression refrigeration systems[ J ]. Energy Conversion and Management, 2001, 42: 1457-1475.
  • 8El-Din Salah M M. Optimization of totally irreversible refrigerators and heat pumps[ J]. Energy Conversion and Management, 1999, 40: 423-436.
  • 9Florides G A, Kalogirou S A, Tassou S A, et al. Design and construction of a LiBr-water absorption machine[ J ]. Energy Conversion and Management, 2003, 44: 2483-2508.
  • 10Florides G A, Kalogirou S A, Tassou S A, et al. Modelling, simulation and warming impact assessment of a domestic-size absorption solar cooling system[J]. Applied Thermal Engineering, 2002, 22: 1313-1325.

二级参考文献7

共引文献2

同被引文献10

  • 1CHEN L G, SUN F, CHEN W. Optimal performance coefficient and cooling load relationship of a three- heat-reservoir endoreversible refrigerator[J]. Int.J.Pow. Energy System, 1997, 17(3): 206-208.
  • 2ZHENG T, CHEN L, SUN F, et al. Performance optimization of an irreversible four-heat-reservoir absorption refrigerator[J]. Applied Energy, 2004, 76(4): 391-414.
  • 3CHEN L, LI Y, SUN F, et al. Optimal performance of an irreversible absorption refrigerator[J]. Exergy. An Int.J., 2002, 2(3): 167-172.
  • 4CHEN J, SCHOUTON J A. Optimum performance characteristics of an irreversible refrigeration system[J]. Energy Convers.Mgmt., 1997, 39(10): 582-587.
  • 5GOKTUN S. Optimal performance of an irreversible refrigerator with three heat sources[J]. Int. J. Energy, 1997, 22(1): 27-31.
  • 6CHUA H T, GORDON J M, NG K C. Entropy production analysis and experimental confirmation of absorption systems[J]. Int. J. Refrig., 1997, 20: 179-190.
  • 7LEE S F, SHERIF S A. Second law analysis of muti-effect lithium bromide/water absorption chillers[J]. ASHRAE, 1999, 105(1): 1 256-1 266,.
  • 8CHENG Zhuoming, CUI Xiaoyu, LI Meiling. Application of PRNN in dynamic modeling of absorption chiller[C]//Proceedings of the international conference on energy and the environment, Shanghai: Shanghai Scientific and Technical Publishers, 2003:1 435-1 438.
  • 9徐士鸣,袁一.基于热力学第二定律的吸收式制冷循环分析[J].大连理工大学学报,1998,38(1):70-75. 被引量:6
  • 10施哲强,陈金灿.不可逆四热源吸收式制冷系统的基本优化关系及其性能分析[J].低温工程,2001(4):58-64. 被引量:15

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部