期刊文献+

直接甲醇燃料电池(火用)传递及能量利用特性

CHARACTERISTICS OF EXERGY TRANSPORT AND ENERGY UTILIZATION IN DIRECT METHANOL FUEL CELL
下载PDF
导出
摘要 建立了直接甲醇燃料电池(DMFC)(火用)分析的稳态模型,模型中考虑了甲醇串流以及各种不可逆损失引起的过电位的影响。在模型基础上推导出DMFC的(火用)效率表达式,并分别从电效率和热(火用)效率的角度出发,分析了燃料中能量的有效利用率,定量分析了甲醇串流率、电流密度、工作温度、阴极压力等参数对电池(火用)效率的影响,揭示了不可逆因素对直接甲醇燃料电池(火用)传递规律的影响。通过分析发现:燃料电池在运行过程中产生的热能(火用)在总有效能中占有很大比例,与电能相当,充分利用热量(火用)可显著提高电池的整体效率;电池在低电流密度下运行时,甲醇串流率过高是造成能量损失的主要原因;DMFC的总效率在电流密度接近极限电流密度时达到峰值,电池的工作电流应尽量控制在这一区间内。 An exergy analysis model for direct methanol fuel cell (DMFC) was established. Taking methanol crossover and overpotential into account, an expression of exergy efficiency which revealed the effects of irreversiablity on exergy transport were deduced. Further more, the utilization rate of energy stored in methanol and investigated changes of electric efficiency and thermal efficiency under various methanol crossover rates, current densities, operating temperature, and cathode pressure were quantitatively calculated. Some suggestions on optimizing operating conditions of direct methanol fuel cell based on the findings were also conducted. It was found that the thermal energy generated in fuel cell covered a significant amount of exergy in total energy and should be sufficiently used to improve total efficiency in a DMFC. Based on the investigation, the high methanol crossover rate is the predominant cause of energy loss when the fuel cell operates under low current density and total exergy efficiency of a DMFC reaches peak value when operating current is near limited density.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2008年第2期234-240,共7页 Acta Energiae Solaris Sinica
基金 国家自然科学基金项目(No.50629601,50636050)
关键词 直接甲醇燃料电池 甲醇串流 炯分析 稳态模型 燃料电池效率 direct methanol fuel cell methanol crossover exergy analysis model efficiency
  • 相关文献

参考文献14

  • 1胡桂林,樊建人,岑可法.直接液体甲醇燃料电池的数学模型[J].动力工程,2003,23(3):2465-2469. 被引量:4
  • 2Cong X, Peter M F, Lorenz T B, et al. Numerical simulation and optimization of a direct methanol fuel cell[J]. Computers & Chemical Engineering, 2005, 29: 1849-1860.
  • 3Kjeang K, Goldak J, Golriz M R, et al. A parametric study of methanol crossover in a flowing electrolyte-direct methanol fuel cell[J]. Journal of Power Sources, 2006, 153: 89-99.
  • 4Sundmacher K, Schultz T, Zhou S, et al. Dynamics of the direct methanol fuel cell (DMFC): experiments and modelbased analysis [ J ]. Chemical Engineering Science, 2001, 56: 333-341.
  • 5Baxter S F, Battaglia V S, White R E. Methanol fuel cell model: Anode [J]. Journal of the Electrochemical Society, 1999, 146(2) : 437-447.
  • 6Kulikovsky A A, Divisek J, Komyshev A A. Two-dimensional simulation of direct methanol fuel cell-A new (embedded) type of current collector [ J ]. Journal of the Electrochemical Society, 2000, 147(3): 953-959.
  • 7Ay M, Midilli A, Dince R I. Exergetic performance analysis of a PEM fuel cell [ J ]. International Journal of Energy Research, 2006, 30: 307-321.
  • 8Ishihara A, Mitsushima S, Kamiya N, et al. Exergy analysis of polymer electrolyte fuel cell systems using methanol [ J ]. Journal of Power Sources, 2004, 126: 54--40.
  • 9Kulikovsky A A. The voltage-current curve of a direct methanol fuel cell: "exact" and fitting equations[ J]. Electrochemistry Communications, 2(102, (4) : 939-946.
  • 10Scott K, Argyropoules P, Sundmaeher K. A model for the liquid feed direct methanol fuel cell [J]. Journal of Power Sources, 1999, 477: 97-110.

二级参考文献9

  • 1Verbrugge M W. Methanol diffusion in perfluorinated ionexchange membranes [J]. J. Electrochemical Soc. 1989(136) :417-423.
  • 2Scott K,Tamma W,Cruickshank. Performance and modeling of a direct methanol fuel cell systems [J]. Power sources, 1997(65) : 159-171.
  • 3Baxter S R, Battaglia V S, White R E. Methanol fuel cell model: anode[J]. Electrochemical Soc 1999;146(2):437-447.
  • 4Sundmacher K,Schultz T,Zhou S, et al. Dynamics of the direct mathanoil fuel cell(DMFC): experiments and modelbased analysis[J]. Chemical Engineering Science 2000;56:333-341.
  • 5Kulikovsky AA, Divisek J, Kornyshev AA. Two-dimensional simulation of direct methanol fuel cell: a new (embedded)type of current collector [J]. Electrochemical soc 2000; 147(3) :953-959.
  • 6Kulikovsky AA. Two-dimensional numerical modeling of adirect methanol fuel cell[J]. J Appl Electrochem 2000(30):1005-1014.
  • 7Wand ZH, Wang CY. Mathematical modeling of liquid-feed direct mathanol fuel cells[C]. Proceedings of the 199^th ECS,(2001).
  • 8Dohle H, Divisek J, Jung R. Process engineering of the direct methanol fuel cell[C]. Power Sources 2000(86): 469-477.
  • 9Bernardi DM, Verbrugge MW. Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte [J].AICHEJ 1991(37):1151-1163.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部