摘要
在《命名与必然性》中,克里普克论证了"一米等于S在时间t0时的长度"是一个先验的偶然命题。因为,这是一个确定"一米"指称的定义,因而是一个先验命题;克里普克还从两个方面论证了"一米等于S在时间t0时的长度"是一个偶然命题,其一是这只是通过确定指称给出一个定义,所以该命题不是必然的;其二是通过指出"一米"是严格指示词,而"S在时间t0时的长度"是非严格指示词,所以该命题是偶然命题。
In Naming and Necessity, Kripke argues that "S is one meter long at t0" is a priori, contingent proposition. "S is one meter long at t0" is a definition to fix the reference of one meter, so it should be a priori proposition. Kripke also demonstrates that "S is one meter long at t0" is a contingent proposition from two aspects. On the one hand, this statement only gives a definition by fixing reference, which means the proposition is not a necessity~ and on the other hand, "one meter" is a rigid designator, but"The length of S at t0" does not designate anything rigid.
出处
《西南大学学报(社会科学版)》
CSSCI
北大核心
2008年第2期59-62,共4页
Journal of Southwest University(Social Sciences Edition)
关键词
克里普克
先验偶然命题
巴黎标准尺
Kripke
priori and contingent proposition
the Paris standard meter