期刊文献+

非协调实体壳元及其在振动分析中的应用

Incompatible Solid Shell Element and Its Application to Vibration Analysis
原文传递
导出
摘要 在八节点三维实体等参单元的基础上,为局部坐标系下的挠度位移分量附加单元内非协调位移项,构造了能很好反映横向剪切变形影响的八节点非协调实体壳单元,并将该单元用于板壳结构的振动分析。修正的应力—应变关系可有效地克服实体壳元的厚度自锁,高阶非协调位移项的附加可免除剪切和厚度锁闭。通过修正单元常应变矩阵和非协调形函数,保证单元在不规则网格时能通过常应力分片检验。数值算例表明:单元计算精度高,且对于厚板和薄板结构的动力分析都能适用。 A non-conforming solid shell element is developed for the vibration analysis of shell structures by introducing the assumption of Mindlin's plate into stress-strain relation of three-dimensional elastic problem. The local coordinate systems are used to conveniently introduce the incompatible displacement modes. Hierarchical incompatible modes selectively added to the ordinary 8-node solid element displacement assumptions are effective to obtain locking-free element. The present element has only four internal parameters. And the satisfaction of the patch test is ensured by using revision techniques of the incompatible strain matrix and shape function. To verify the validation and improvement of the proposed element, several numerical tests are carried out. Numerical results show that the element has the advantage of convergence, stability and higher precision and is suitable for simulating shell structures with a wide range of thickness.
作者 王云岗
出处 《建筑科学》 北大核心 2008年第3期39-42,共4页 Building Science
关键词 实体壳单元 非协调元 振动分析 solid shell element incompatible element vibration analysis
  • 相关文献

参考文献6

  • 1Ahmad S., Irons B. M., Zienkiewicz O. C.. Analysis of thick and thin shen structures by curved finite elements [ J ]. International Journal for Numerical Methods in Engineering, 1970, 2 (3) : 419-451.
  • 2Hauptmann R., Schweizerhof K.. A systematic development of solid-shell element formulations for linear and non-linear analysis employing only displacement degrees of freedom [ J ]. International Journal for Numerical Methods in Engineering, 1998, 42( 1 ) :49 - 69.
  • 3徐兴,干湧.实体退化板单元及其在板的振动分析中的应用[J].工程力学,2003,20(5):106-109. 被引量:2
  • 4Dvorkin E. N., Bathe K.J.. A continuum mechanics based fournode shell element for general nonlinear analysis [ J ]. Engineering Computations, 1984, 1:77- 88.
  • 5Taylor R.L., Bersesford P.J. and Wilson E.L., A non-conforming element for stress analysis [ J ], International Journal for Numerical Methods in Engineering, 1976, 10(6): 1211 - 1219.
  • 6Pian T. H. H. and Wu C. C., General formulation of incompatible shape function and incompatible isoparametric element[ C], in Proc, Invitational China-America Workshop on R E M, 159-165, Chengde China, June 2-6, 1986.

二级参考文献3

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部