期刊文献+

基于BP神经网络的模塑封材料疲劳寿命预测 被引量:4

Prediction of fatigue life of packaging EMC material based on BP neural networks
下载PDF
导出
摘要 根据模塑封材料(EMC)疲劳实验,针对BP神经网络[反向传播神经网络(BPNN)]拟合误差与预测误差关系不稳定的应用问题,结合主成分分析法,"主动"改善网络结构,建立了基于BP神经网络的EMC材料疲劳寿命预测模型,进行了分析,并与一般的BP神经网络模型作了比较。结果表明,该方法得到的BP神经网络经过训练后能稳定表征EMC材料的各种参数与疲劳寿命间的内在关系。当网络拓扑结构为2-4-1时,预测结果稳定,预测误差平方和(SSE)为0.5623~0.0271,拟合误差(MSE)为0.0906~0.0278,具有实用性。 Based on the fatigue experimental results of packaging epoxy molding compound (EMC) material, with a focus on the application problem of the instability on fitting and prediction error of BP neural network, the prediction model of fatigue lifetime for EMC materials was established. The network structure was improved with "initiative way" by principal component analysis, And then, the relevance network model was established and analyzed and compared with general BP neural network model. The results show that the trained BP neural network can stably obtain the characterization of implied relationship between the various parameters and fatigue life of packaging EMC Material. It also show very stable forecasting results and in good utility when network topology is in the state of 2-4-1, MES is between 0.090 6~0.027 8, SSE is between 0.562 3~0.027 1.
出处 《电子元件与材料》 CAS CSCD 北大核心 2008年第3期64-67,共4页 Electronic Components And Materials
基金 国家自然科学基金资助项目(No.60666002)
关键词 电子技术 反向传播神经网络 疲劳寿命 主成分分析 模塑封材料 electron technology back-propagation neural network fatigue life principal component analysis EMC
  • 相关文献

参考文献8

  • 1黄瑞毅,杨少华,李坤兰,吴福根.BP神经网络在元器件非工作可靠性参数预测中的应用[J].电子产品可靠性与环境试验,2005,23(5):7-9. 被引量:8
  • 2Yousef A A, Hany E K. Fatigue life prediction of composite materials using polynomial classifiers and recurrent neural networks [J]. Compos Struct, 2007, 77:561 --569.
  • 3Leel J A, Almond D P, Harris B. The use of neural networks for the prediction of fatigue lives of composite materials [J]. Composites: Part A, 1999, 30: 1159--1169.
  • 4金龙,况雪源,黄海洪,覃志年,王业宏.人工神经网络预报模型的过拟合研究[J].气象学报,2004,62(1):62-70. 被引量:78
  • 5武妍,张立明.神经网络的泛化能力与结构优化算法研究[J].计算机应用研究,2002,19(6):21-25. 被引量:42
  • 6Hany E K. Modeling the mechanical behavior of fiber-reinforced polymeric composite materials using artificial neural networks [J]. Compos Struct, 2006, 73: 1-23.
  • 7郝秀云.微电子封装用高聚物的疲劳失效分析[D].桂林:桂林电子科技大学,2004.6.
  • 8丛爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科技大学出版社,2003..

二级参考文献18

共引文献213

同被引文献27

  • 1刘妹琴.时滞标准神经网络模型及其应用[J].自动化学报,2005,31(5):750-758. 被引量:4
  • 2刘向东,修春波,李黎,刘承.迟滞非线性系统的神经网络建模[J].压电与声光,2007,29(1):106-108. 被引量:15
  • 3HUG J, ANDREW A O T. On the relative contribution of temperature, moisture and vapor pressure to delamination in a plastic IC package during lead-free solder reflow[C]//Electronics Packaging Technology Conference. [S:1]: IEEE, 2005.
  • 4ANDREW A O T. The role of simulation in failure prediction and design optimization in electronics packaging [J]. IEEE, Electron Packaging, 2006(6): 1-8.
  • 5TEE T Y. Integrated vapor pressure, hygroswelling, and thermo-mechanical stress modeling of QFN package during reflow with interracial fracture mechanics analysis [J]. Microelectronics Reliability, 2004, 44:105-114.
  • 6BEIJER J GJJ. JANSSEN J H J. BRESSERs H J L. Waroale minimization of the HVQFN map mould [J]. IEEE Electron Packaging, 2005, 168-174.
  • 7BILLINTON R,CHEN H.Assessment of risk-based capacity benefit factors associated with wind energy conversion systems[J].IEEE Trans Power Syst,1998,13(3):1191-1196.
  • 8SMET V,FOREST F,HUSELSTEIN J J,et al.Ageing and failure modes of IGBT devices in high-temperature power cycling[J].Indust Electron IEEE Trans,2011,58(10):4931-4941.
  • 9LI Y,AGYAKWA P A,JOHNSON C M.Physics-of-failure lifetime prediction models for wire bond interconnects in power electronic devices.device and materials reliability[J].IEEE Trans,2013,13(1):9-17.
  • 10SUYKENS J A K,VANDEWALLE J P L,DE MOOR B L R. Artificial neural networks,for modelling and control of non-linear systems [ M ]. MA : Kluwer Academic Publishers, 1996.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部