期刊文献+

美式期权的三叉树定价模型 被引量:12

A trinomial tree methods for pricing American options
下载PDF
导出
摘要 美式期权不同于欧式期权,美式期权可以在到期日以前任意时间操作。一般而言,美式期权定价的解析解是很难得到的,二叉树方法是一个比较好的数值计算的方法,运用三叉树的模型得到了美式期权的一种数值计算方法,并且给出实例说明三叉树模型要比二叉树模型在精确性方面更好,收敛速度更快。 An American option differs from a European one. An American option can be exercised at any time up to the maturity date. In general, there is unfortunately no analytical solution to the American option problem. Binomial tree pricing model is a better numerical method. A trinomial tree pricing model of the American option is used It is obvious that trinomial model is excelled than binomial tree model in precision and calculation from an example.
作者 何颖俞
机构地区 浙江大学数学系
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2008年第1期81-84,共4页 Journal of Natural Science of Heilongjiang University
基金 浙江省自然科学基金资助项目(Y604137)
关键词 美式期权 BLACK-SCHOLES期权定价模型 二叉树模型 三叉树模型 American option Black--Scholes model binomial model trinomial model
  • 相关文献

参考文献8

  • 1Cox J,Ross C, Rubinstein M. Option pricing:a simplified approach[J]. Journal of Finance Economies,1979, 7:229-264.
  • 2Black F, Myron S. The pricing of options and corporate liabilities [ J ]. Journal of Political Economy, 1973,81 : 637 -654.
  • 3Kamrad B, Ritchken P. Multinominal approximating model for options with k states variables[ J ]. Management Science, 1991,37:1460 - 1652.
  • 4Boyal P P. A lattice framework for option pricing with two state variables[ J ]. Journal of Financial and Quantitative Analysis, 1988, 23 : 1 - 23.
  • 5Tian Y. A modified lattice approach to option pricing[J]. Journal of Future Marbets,1993, 13:563 -577.
  • 6Paul Wilmot. Derivatives -The theory and practice of financial engineering[ M ]. New York: Mc Graw- Hill, 1992.
  • 7谢赤.一个依赖于挠度与峭度的三项式期权定价模型[J].系统工程理论方法应用,2000,9(3):209-216. 被引量:9
  • 8谢赤.不变方差弹性(CEV)过程下障碍期权的定价[J].管理科学学报,2001,4(5):13-20. 被引量:19

二级参考文献14

  • 1[1]Merton R C. The theory of rational option pricing[J]. Bell Journal of Economics and Management Science,1973,(4):141-183
  • 2[2]Black F, Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, (81):637-659
  • 3[3]Cheuk T H F, Vorst T C F. The constant elasticity of variance option pricing model[J]. Journal of Portfolio Mana-gement, 1996, (22):15-17
  • 4[4]Cox J C. Notes on option pricing I: constant elasticity of variance diffusions[M]. Unpubl. Note Stanford Univ., 1975
  • 5[5]Cox J C, Ross S A. The valuation of options for alternative stochastic processes[J]. Journal of Financial Econimics, 1976, (3): 145-166
  • 6[6]Duffic D. Dynamic asset pricing theory[M]. Princetion, NJ:Princeton Unive. Press, 1996
  • 7[7]Boyle P P. Option valuation using a three-jump process[J]. International Options Journal, 1986, (3):7-12
  • 8[8]Boyle P P. A lattice framework for option pricing with two state variables[J]. Journal of Financial and Quantitative Analysis,1988,(35):1-12
  • 9[9]Kamrad B, Ritchken P. Multionmial approximating models for options with K-state variables[J]. Management Science, 1991, (37): 1640-1652
  • 10[10]Tian Y. A modified lattice approach to option pricing[J]. Journal of Futures Markets, 1993, (13): 563-577

共引文献21

同被引文献69

引证文献12

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部