摘要
郭继明在文献[1]中研究了代数连通度极限点的性质,并且确定了树的代数连通度前两大值。Kirkland在文献[2]中用正矩阵Perron值的方法刻划了树的代数连通度的极限点,并给出了树的代数连通度的前四大值和达到这些数值相应的分支。在此基础上确定了树的代数连通度极限点的第五到第十四大值,并且给出了达到这些数值的分支。
In [ 1 ], Guo Ji - ming discusses some of the properties of the set of limit points for algebraic connectivity, and finds the two largest limit points for algebraic connectivity of trees. In [ 2 ], Kirkland characterizes the limit points for algebraic connectivity of trees in terms of Perron values of certain positive matrices, and finds the four largest elements of limit points for algebraic connectivity of trees together with the corresponding branches. On the basis of these two results, the fifth to the fourteenth largest elements of limit points for algebraic connectivity of trees together with the corresponding branches are determined.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2008年第1期103-106,共4页
Journal of Natural Science of Heilongjiang University