期刊文献+

树的代数连通度极限点的排序(英文) 被引量:3

The ordering of limit point of algebraic connectivity of trees
下载PDF
导出
摘要 郭继明在文献[1]中研究了代数连通度极限点的性质,并且确定了树的代数连通度前两大值。Kirkland在文献[2]中用正矩阵Perron值的方法刻划了树的代数连通度的极限点,并给出了树的代数连通度的前四大值和达到这些数值相应的分支。在此基础上确定了树的代数连通度极限点的第五到第十四大值,并且给出了达到这些数值的分支。 In [ 1 ], Guo Ji - ming discusses some of the properties of the set of limit points for algebraic connectivity, and finds the two largest limit points for algebraic connectivity of trees. In [ 2 ], Kirkland characterizes the limit points for algebraic connectivity of trees in terms of Perron values of certain positive matrices, and finds the four largest elements of limit points for algebraic connectivity of trees together with the corresponding branches. On the basis of these two results, the fifth to the fourteenth largest elements of limit points for algebraic connectivity of trees together with the corresponding branches are determined.
作者 刘颖
机构地区 同济大学数学系
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2008年第1期103-106,共4页 Journal of Natural Science of Heilongjiang University
关键词 代数连通度 瓶颈矩阵 Perron分支 algebraic connectivity bottleneck matrix Perron component
  • 相关文献

参考文献8

  • 1Guo J M. The limit points of Laplacian spectra of graphs[ J ]. Linear Algebra Appl, 2003,362:121 - 128.
  • 2Kirkland S. A note on limit points for algebraic connectivity[J]. Linear Algebra Appl, 2003,373:5 - 11.
  • 3Fielder M. Algebraic connectivity for graphs [ J ]. Czechoslovak Math J, 1973,23 ( 98 ) :298 - 305.
  • 4Fielder M. A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory [ J ]. Czechoslovak Math J, 1975,23 (100) :619 -633.
  • 5Merris R. Laplacian matrices of graphs: a survey[ J ]. Linear Algebra Appl, 1994,197/198 : 143 - 176.
  • 6Fallat S, Kirkland S. Extremizing algebraic connectivity subject to graph theoretic constraints [ J ]. Elect J Linear Algebra, 1998, 3:48 - 74.
  • 7Kirkland S, Neumann M, Shader B. Characteristic vertices of weighted trees via Perron values[ J ]. Linear and Muhilinear Algebra, 1996,40:311 - 325.
  • 8Kirkland S, Fallat S. Perron components and algebraic connectivity for weighted graphs[ J ]. Linear and Muhilinear Algebra, 1998,44 : 131 - 148.

同被引文献11

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部