期刊文献+

Dependent-Chance Programming Models for Capital Budgeting in Fuzzy Environments 被引量:2

Dependent-Chance Programming Models for Capital Budgeting in Fuzzy Environments
原文传递
导出
摘要 Capital budgeting is concerned with maximizing the total net profit subject to budget constraints by selecting an appropriate combination of projects. This paper presents chance maximizing models for capital budgeting with fuzzy input data and multiple conflicting objectives. When the decision maker sets a prospective profit level and wants to maximize the chances of the total profit achieving the prospective profit level, a fuzzy dependent-chance programming model, a fuzzy multi-objective dependent-chance programming model, and a fuzzy goal dependent-chance programming model are used to formulate the fuzzy capital budgeting problem. A fuzzy simulation based genetic algorithm is used to solve these models. Numerical examples are provided to illustrate the effectiveness of the simulation-based genetic algorithm and the potential applications of these models. Capital budgeting is concerned with maximizing the total net profit subject to budget constraints by selecting an appropriate combination of projects. This paper presents chance maximizing models for capital budgeting with fuzzy input data and multiple conflicting objectives. When the decision maker sets a prospective profit level and wants to maximize the chances of the total profit achieving the prospective profit level, a fuzzy dependent-chance programming model, a fuzzy multi-objective dependent-chance programming model, and a fuzzy goal dependent-chance programming model are used to formulate the fuzzy capital budgeting problem. A fuzzy simulation based genetic algorithm is used to solve these models. Numerical examples are provided to illustrate the effectiveness of the simulation-based genetic algorithm and the potential applications of these models.
作者 梁锐 高金伍
出处 《Tsinghua Science and Technology》 SCIE EI CAS 2008年第1期117-120,共4页 清华大学学报(自然科学版(英文版)
基金 the National Natural Science Foundation of China (No. 70601034)
关键词 fuzzy variable capital budgeting dependent-chance programming genetic algorithm fuzzy variable capital budgeting dependent-chance programming genetic algorithm
  • 相关文献

参考文献2

共引文献3

同被引文献16

  • 1张金隆,王林,陈涛,曾宇容.连续生产模式下的不常用备件联合采购优化分析[J].中国管理科学,2004,12(5):58-62. 被引量:16
  • 2王小斌,唐万生,赵瑞清.Fuzzy Economic Order Quantity Inventory Models Without Backordering[J].Tsinghua Science and Technology,2007,12(1):91-96. 被引量:4
  • 3DAVIS L,SAMANLIOGLU F,JIANG X C,et al.A heuristic ap-proach for allocation of data to RFID tags:a data allocation knapsackproblem(DAKP)[J].Computers&Operations Research,2012,39(2):93-104.
  • 4DREXL A.A simulated annealing approach to the multiconstraint ze-ro-one knapsack problem[J].Computing,1988,40(1):1-8.
  • 5LI V C,CURRY G L.Solving multidimensional knapsack problemswith generalized upper bound constraints using critical event tabusearch[J].Computers&Operations Research,2005,32(11):825-848.
  • 6HANAFI S,FREVILLE A.An efficient tabu search approach for the0-1 multidimensional knapsack problem[J].European Journal ofOperational Research,1998,106(2):659-675.
  • 7THIEL J,VOSS S.Some experiences on solving multiconstraint zero-one knapsack problems with genetic algorithms[J].INFOR,1994,32(4):226-242.
  • 8CHU P,BEASLEY J.A genetic algorithm for the multidimensionalknapsack problem[J].Journal of Heuristics,1998,4(1):63-86.
  • 9DORIGO M,MANIEZZO V,COLORNI A.The ant system:optimi-zation by a colony of cooperating agents[J].IEEE Trans on Sys-tems,Man and Cybernetics:Part B,1996,26(1):1-13.
  • 10LEGUIZAMON G,MICHALEWICZ Z.A new version of ant systemfor subset problem[C]//Proc of Congress on Evolutionary Computa-tion.1999:1456-1464.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部