期刊文献+

一维减幅-增幅谐振子的守恒量与对称性

The study of symmetries and conserved quantities for one-dimensional damped-amplified harmonic oscillators
原文传递
导出
摘要 从一维减幅-增幅谐振子的运动微分方程出发得到系统的运动积分常数,从而得到系统的Lagrange函数和Hamilton函数,再根据Hamilton函数的形式假定守恒量的形式,由Poisson括号的性质得到了系统的三个守恒量,并讨论与三个守恒量相应的无限小变换的Noether对称性与Lie对称性.还对守恒量与对称性的物理意义作了合理的解释. In this paper, a constant of motion of one-dimensional damped-amplified harmonic oscillators is derived from Newton' s equations, and the Lagrangian and the Hamiltonian of system are expressed in term of the constant of motion. According to the expression of the Hamihonian, we make an ansatz for the conserved quantity and then three conserved quantities are obtained by using the definition of Poisson bracket. The Noether symmetry and Lie symmetry of the infinitesimal transformations of the three conserved quantities are studied and the essence of symmetries and conserved quantities are also explained in this paper.
作者 楼智美
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2008年第3期1307-1310,共4页 Acta Physica Sinica
关键词 一维减幅-增幅谐振子 守恒量 NOETHER对称性 LIE对称性 one-dimensional damped-amplified harmonic oscillators, conserved quantities, Noether symmetry, Lie symmetry
  • 相关文献

参考文献17

二级参考文献42

共引文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部