期刊文献+

晶体非线弹性变形的原子级模拟研究 被引量:1

The nonlinear elastic behavior of crystalline solids:An atomistic simulation study
原文传递
导出
摘要 采用分子静力学结合量子修正Sutten-Chen型多体势研究了Ni单晶体在受单向拉伸和压缩载荷作用下的弹性响应.考虑了三种加载方式,即[001],[011]和[111]单向加载.模拟的结果表明:晶体在[011]单向加载下的弹性变形表现出强烈的非线性效应,然而沿[001]和[111]单向加载时,它的横向变形表现为各向同性.进一步讨论了杨氏模量和泊松比与应变的关系,并和第一性原理计算的结果做了比较. In this paper, we employ molecular static approach with quantum corrected Sutten-Chen many-body potential to study the elastic responses of nickel monocrystal subjected to uniaxial tensile and compressive loading, and consider three different loadings, i.e., the [001], [011] and [ 111] loding. The simulated results show that strong nonlinear effects are found in the elastic behavior of monocrystal under the [011] loading, while the lateral deformations are essentially isotropic under [ 100] and [ 111 ] loadings. The further discussions are focused on the dependence of the Young' s moduli and Poisson' s ratios on the applied strain, and a brief comparison with first-principles calculations is also presented.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2008年第3期1834-1839,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10702056) 兰州理工大学甘肃省有色金属新材料国家重点实验室资助的课题~~
关键词 晶体 弹性变形 分子静力学 原子级模拟 crystal, elastic deformation, molecular static approach
  • 相关文献

参考文献17

  • 1Perez N 2004 Fracture mechanics (Boston: Kluwer Academic Publishers) p 128.
  • 2Lung C W, March N H 2000 Mechanical Properties of Metals: Atomistic and Fractal Continuum Approaches (Beijing: World Scientific Publishing) p 112.
  • 3Yan Y, Permycook S J 2000 Nature 403 266.
  • 4Derlet P M, Meyer R, Lewis L J, Stuhr U, Van Swygenhoven H 2001 Phys. Rev. Lett. 87 205501.
  • 5Binder K, Horbach J, Kob W, Paul W, Varnik F 2004 J. Phys. : Condens. Mater. 16 S429.
  • 6文玉华,朱弢,曹立霞,王崇愚.镍基单晶超合金Ni/Ni_3Al晶界的分子动力学模拟[J].物理学报,2003,52(10):2520-2524. 被引量:21
  • 7Milstein F, Chantasiriwan S 1998 Phys. Rev. B 58 6006.
  • 8Chantasiriwan S, Milstein F 1998 Phys. Rev. B 58 5996.
  • 9Qi Y, Kimura Y, Goddard W A 1999 Phys. Rev. B 59 3527.
  • 10Sandvik B P J, Wayman C M 1983 Metall. Trans. A 14 835.

二级参考文献10

  • 1Himshi Harada and Hideyuki Murakami. 2000 Computtational Materials Design (Berlin:Springer )p39.
  • 2Lukas P, Kunz L and Svoboda J. 1997 Materials Science and Engineering A 234- 236 459.
  • 3Zhao L G, Tong J, Vermeulen B and Byrne J. 2001 Mechanics of materials , 33 593.
  • 4Wen Y H, Zhou F X and Liu Y W. 2001 Chin Phys. 10 407.
  • 5Li B, Zhang X M and Li Y Y .1998 Chin Phys. 7 583.
  • 6Gao F and Bacon D J .1993 Philos Mag. A 67 275.
  • 7Berendsen H J C, Postma J P M, Gunstexen W F V, Nola A D and Haak J R .1984 Jour Chem Phys. 81 3684.
  • 8Parrinello M and Rahman A .1981 Jour Appl Phys. 52 7182.
  • 9Honeycutt R W .1970 Methods in Computational Physics 9 136.
  • 10文玉华,朱如曾,周富信,王崇愚.分子动力学模拟的主要技术[J].力学进展,2003,33(1):65-73. 被引量:132

共引文献20

同被引文献16

  • 1Gell M, Duhl D N, Giamei A F 1980 Superalloys (Metals Park: American Society for Metals) p205.
  • 2Walston S, Cetel A, Mackay R, O'Hara K, Duhl D, Dreshfield R 2004 Superalloys (Warrendale: The Minerals, Metals and Materials Society) p15.
  • 3Kayser F X, Stassis C 1981 Phys. Star. Sol. A 64 335.
  • 4Voter A F, Chen S P 1987 High Temperature Ordered latermetallic Alloys (Pittsburgh: Materials Research Society) p175.
  • 5Jackson J J, Donachie M J, Henrich R J, Cell M 1977 Metall. Trans. A 8 1615.
  • 6Khan T, Caron P 1986 Mater. Sci. Techn. 2 486.
  • 7Chen L Q, Wang C Y, Yu T 2008 Chin. Phys. 17 662.
  • 8Angelo J E, Moody N R, Baskes M I 1995 Model. Simul. Mater.Sci. Eng. 3 289.
  • 9Angelo J E, Baskes M 1 1996 Interf. Sci. 4 47.
  • 10Mishin Y, Farkas D, Mehl M J, Papaconstantopoulos D A 1999 Phys. Rev. B 59 3393.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部