期刊文献+

结合DCT与分形编码的自适应水印算法

An Adaptive Watermarking Algorithm Combined with DCT and Fractal Coding
下载PDF
导出
摘要 提出并实现了一种结合DCT与分形编码的自适应水印算法。将宿主图像分成大小相同的不重叠方块,利用分形编码的拼贴误差对图像块进行分类,并构造原始宿主图像的二值特征标图,采用Arnold变换置乱二值特征标图和二值版权图标,再进行异或(XOR)运算得到隐秘水印。最后通过在子块DCT域中所选的三个中频系数的比较来完成隐秘水印的嵌入。实验表明,按该方法嵌入的水印具有良好的不可见性,也能较好抵抗高斯滤波、JPEG压缩、叠加噪声等处理。 An adaptive image watermarking algorithm combined with Discrete Cosine Transform (DCT) and fractal coding is proposed. The host image is split into non - overlapping fixed- size square blocks, which are categorized into two classes according to their collage errors obtained by performing baseline fractal ceding. The blocks classifica- tion is utilized to form a feature mark of the host image and determine imbedding strengths of the watermark in distinct blocks. Arnold transform is applied to scramble both the feature mark and binary copyright symbol. The watermark is the fusion of the scrambled feature mark and a scrambled binary copyright symbol ( using XOR operation). Lastly, the watermErk is embedded into the middle frequency bands of DCT domains of distinct blocks by comparing the selected three coefficients. The experimental results show that the embedded watermark is invisible, and is also very robust against some image processing such as Gaussian filtering, JPEG compression and noising.
出处 《计算机仿真》 CSCD 2008年第3期138-141,共4页 Computer Simulation
关键词 数字水印 离散余弦变换 分形编码 中频系数 Digital watermarking Discrete cosine transform (I)CT) Fractal coding Middle frequency coefficients
  • 相关文献

参考文献9

二级参考文献37

  • 1何传江,李高平.分形图像编码的改进算法[J].计算机仿真,2004,21(8):62-65. 被引量:16
  • 2许晓曾,何传江.基于相关系数的快速分形图像编码[J].计算机仿真,2004,21(11):68-70. 被引量:5
  • 3Wohlberg B., Jager G.. A review of the fractal image coding literature. IEEE Transactions on Image Processing, 1999, 8(12) : 1716~1729.
  • 4He C., Yang S.X., Huang X.. Novel progressive decoding method for fractal image compression. IEE Proceedings-Vision, Image and Signal Processing, 2004, 151 (3): 207~213.
  • 5He C., Yang S.X., Huang X.. Variance-based accelerating scheme for fractal image encoding. IEE Electronics Letters, 2004, 40(2): 115~116.
  • 6He C., Yang S.X., Xu X.. Fast fractal image compression based on one-norm of normalised block. IEE Electronics Letters, 2004, 40(17): 1052~1053.
  • 7Lai C.-M., Lam K.-M., Siu W.-C.. A fast fractal image coding based on kick-out and zero contrast conditions. IEEE Transactions on Image Processing, 2003, 12 (11): 1398~1403.
  • 8Jeng J.H., Truong T.K., Sheu J.R.. Fast fractal image compression using the Hadamard transform. IEE Proceedings-Vision, Image and Signal Processing, 2000, 147 (6): 571~573.
  • 9Hartenstein H., Saupe D.. Lossless acceleration of fractal image encoding via the fast Fourier transform. Signal Processing: Image Communication, 2000, 16 (4): 383~394.
  • 10Lee C.K., Lee W.K.. Fast fractal image block coding based on local variances. IEEE Transactions on Image Processing, 1998, 7(6): 888~891.

共引文献347

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部